Presentation is loading. Please wait.

Presentation is loading. Please wait.

Statistics, Data, and Statistical Thinking

Similar presentations


Presentation on theme: "Statistics, Data, and Statistical Thinking"— Presentation transcript:

1 Statistics, Data, and Statistical Thinking
Chapter 1 Statistics, Data, and Statistical Thinking

2 The Science of Statistics
Statistics – the science that deals with the collection, classification, analysis, and interpretation of information or data Collection Evaluation (classification, summary, organization and analysis) Interpretation

3 Collecting Data Data Sources
Published source – books, journals, abstracts The Wall Street Journal, The Sporting News Designed Experiment Often used for gathering information about an intervention Survey Data gathered through questions from a sample of people Observational Study Data gathered through observation, no interaction with units

4 Collecting Data Common Sources of Error in Survey Data
Selection bias – exclusion of a subset of the population of interest prior to sampling Non-response bias – introduced when responses are not gotten from all sample members Measurement error – inaccuracy in recorded data. Can be due to survey design, interviewer impact, or a transcription error

5 Collecting Data Sampling
Sampling is necessary if inferential statistics are to be used Samples need to be representative Reflect population of interest Random Sampling Most common sampling method to ensure sample is representative Ensures that each subset of fixed size is equally likely to be selected

6 Types of Statistical Applications in Business
Descriptive Statistics - describe collected data, utilize numerical and graphical methods to present the information “51.4% of all credit card purchases in the 1st quarter of 2003 were made with a Visa Card” “The average Return-to-Pay Ratio of Financial Industry CEOs (2003) was 24.63”

7 Types of Statistical Applications in Business
Inferential Statistics - make generalizations about a group based on a subset (sample) of that group “Services Industry CEOs are underpaid relative to CEOs in Telecommunications.”

8 Fundamental Elements of Statistics
Experimental Unit – object of interest example – graduating senior Population – the set of units we are interested in learning about example – all 1450 graduating seniors at “State U” Variable – characteristic of a single experimental unit example – age at graduation

9 Fundamental Elements of Statistics
Sample – subset of population example – 100 graduating seniors at “State U” Statistical Inference – generalization about a population based on sample data example – The average age at graduation is 21.9 (based on sample of 100) Measure of reliability – statement about the uncertainty associated with an inference

10 Fundamental Elements of Statistics
Elements of Descriptive Statistical Problems Population/sample of interest Investigative variables Numerical summary tools (charts, graphs, tables) Pattern identification in data

11 Fundamental Elements of Statistics
Elements of Inferential Statistical Problems Population of interest Investigative variables Sample taken from population Inference about population based on sample data Reliability measure for the inference

12 Types of Data Quantitative Data
Measured on a naturally occurring numerical scale Equal intervals along scale (allows for meaningful mathematical calculations) Data with absolute zero (zero means no value) is ratio data (bank balance, grade) Data with relative zero (zero has value) is interval data (temperature)

13 Types of Data Qualitative Data Measured by classification only
Non-numerical in nature Meaningfully ordered categories identify ordinal data (best to worst ranking, age categories) Categories without a meaningful order identify nominal data (political affiliation, industry classification, ethnic/cultural groups)

14 Types of Data Different statistical techniques used for quantitative and qualitative data Qualitative and Quantitative data can be used together in some techniques Quantitative data can be transformed into Qualitative data through category creation Qualitative data cannot be meaningfully transformed into Quantitative data

15 Summary 2 types of statistical applications in business – Descriptive and Inferential 6 fundamental elements of statistics: population experimental units variable sample inference measure of reliability

16 Summary 2 types of data – Quantitative and Qualitative
4 Data collection methods published source designed experiment survey observation

17 Summary Sources of Error in Survey Data selection bias
non-response bias measurement error


Download ppt "Statistics, Data, and Statistical Thinking"

Similar presentations


Ads by Google