Download presentation
Presentation is loading. Please wait.
Published byAmie Joleen Lynch Modified over 6 years ago
1
c-MYC’s role on methylation of the GATA2 gene in non-small cell lung carcinoma
Jonathan Hajduk
2
Cancer Caused through random mutation of the Genome
Improper cell division, ultraviolet light, natural and man-made mutagenic chemicals and reactive oxygen species generated by ionizing radiation Cancer prevention methods Cell inviability after mutation Cytotoxic T cells Natural killer cells Lung cancer 225,000 new cases a year in the U.S.
3
GATA2 GATA family is a group of transcription factors
regulate gene expression of hematopoietic cells this includes: platelets, red blood cells, mast cells, basophils, neutrophils, eosinophils, macrophages, B cells, and T cells GATA2 is expressed in Natural Killer cells Innate immune system looking for improperly regulated MHC-1 molecules
4
GATA2
5
Key factors Fhit gene Methylation RAS pathway Wnt Pathway
Methylated by c-Myc Methylation RAS pathway cell proliferation, cell differentiation, cell adhesion, apoptosis, and cell migration Wnt Pathway regulation of gene transcription, calcium levels
6
c-MYC’s role in the cell
cell proliferation, metabolism, differentiation, and apoptosis Known effects on miR-29b and Fhit 85% of NSCLC involves this pathway Affects genes through mRNA
7
Methods NCI-H522 cell line c-MYC expression “knocked down” using siRNA
Cells split weekly to prevent overgrowth c-MYC expression “knocked down” using siRNA DNA isolated from the cells using Promega Protocol Bisulfite sequencing on isolated DNA PCR reaction and DNA clean-up
8
Where are we? siRNA knock down complete DNA isolation complete
Bisulfite treatment complete Next Steps: PCR analysis to be completed.
9
Further Work Repetition of the experiment
Evidence of pathway factors on GATA2 How does a lack of Ras or Wnt impact GATA2? How does Ras, Wnt, and c-MYC impact GATA2 in vivo? Other potential means of mutating or preventing GATA2
10
References 1. Kandimalla, R.; van Tilborg, Angela A G; Kompier, L. C.; Stumpel, Dominique J P M; Stam, R. W.; Bangma, C. H.; Zwarthoff, E. C. Genome-wide Analysis of CpG Island Methylation in Bladder Cancer Identified TBX2, TBX3, GATA2, and ZIC4 as pTa-Specific Prognostic Markers. Eur. Urol. 2012, 61, 2. Miyawaki, Y.; Kawachi, H.; Ooi, A.; Eishi, Y.; Kawano, T.; Inazawa, J.; Imoto, I. Genomic copy-number alterations of MYC and FHIT genes are associated with survival in esophageal squamous- cell carcinoma. Cancer Science 2012, 103, 3. Romero, I.; Martinez, M.; Garrido, C.; Collado, A.; Algarra, I.; Garrido, F.; Garcia-Lora, A. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells. J. Pathol. 2012, 227, 4. Wu, D.; Hsu, N.; Wang, Y.; Lee, M.; Cheng, Y.; Chen, C.; Lee, H. c-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in non-small cell lung cancer by targeting FHIT. Oncogene 2015, 34, 5. van Hamburg, J. P.; de Bruijn, Marjolein J W; Dingjan, G. M.; Beverloo, H. B.; Diepstraten, H.; Ling, K.; Hendriks, R. W. Cooperation of Gata3, c-Myc and Notch in malignant transformation of double positive thymocytes. Mol. Immunol. 2008, 45, 6. Kumar, M.; Hancock, D.; Molina-Arcas, M.; Steckel, M.; East, P.; Diefenbacher, M.; Armenteros-Monterroso, E.; Lassailly, F.; Matthews, N.; Nye, E.; Stamp, G.; Behrens, A.; Downward, J. The GATA2 Transcriptional Network Is Requisite for RAS Oncogene-Driven Non-Small Cell Lung Cancer. Cell 2012, 149, 7. Dickinson, R. E.; Griffin, H.; Bigley, V.; Reynard, L. N.; Hussain, R.; Haniffa, M.; Lakey, J. H.; Rahman, T.; Wang, X.; McGovern, N.; Pagan, S.; Cookson, S.; McDonald, D.; Chua, I.; Wallis, J.; Cant, A.; Wright, M.; Keavney, B.; Chinnery, P. F.; Loughlin, J.; Hambleton, S.; Santibanez-Koref, M.; Collin, M. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 2011, 118, 8. Czarnecka, K. H.; Migdalska-Sek, M.; Domanska, D.; Pastuszak-Lewandoska, D.; Dutkowska, A.; Kordiak, J.; Nawrot, E.; Kiszalkiewicz, J.; Antczak, A.; Brzezianska-Lasota, E. FHIT promoter methylation status, low protein and high mRNA levels in patients with non-small cell lung cancer. Int. J. Oncol. 2016, 49, 9. Frau, M.; Biasi, F.; Feo, F.; Pascale, R. M. Prognostic markers and putative therapeutic targets for hepatocellular carcinoma. Mol. Aspects Med. 2010, 31, 10. Meissner, A.; Gnirke, A.; Bell, G. W.; Ramsahoye, B.; Lander, E. S.; Jaenisch, R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic acids research 2005, 33, 11. Fischer, S.; Wagner, A.; Kos, A.; Aschrafi, A.; Handrick, R.; Hannemann, J.; Otte, K. Breaking limitations of complex culture media: Functional non-viral miRNA delivery into pharmaceutical production cell lines. J. Biotechnol. 2013, 168, 12. Herrick, D. J.; Ross, J. The half-life of c-myc mRNA in growing and serum-stimulated cells: influence of the coding and 3' untranslated regions and role of ribosome translocation. Mol. Cell. Biol. 1994, 14, 13. Napoli, S.; Carbone, G. M.; Pastori, C.; Magistri, M.; Catapano, C. V. Promoter-specific transcriptional interference and c-myc gene silencing by siRNAs in human cells. The EMBO Journal 2009, 28, 14. Zhang, X.; Ge, Y.; Tian, R. The knockdown of c-myc expression by RNAi inhibits cell proliferation in human colon cancer HT-29 cells in vitro and in vivo. Cell Mol Biol Lett 2009, 14, 15. Hartl, M. The Quest for Targets Executing MYC-Dependent Cell Transformation. Frontiers in oncology 2016, 6, 132.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.