Download presentation
Presentation is loading. Please wait.
1
Determining Equivalent Resistance
2
Series and Parallel Circuits
In series circuits, current can only take one path. The amount of current is the same at all points in a series circuit.
4
Adding resistances in series
Each resistance in a series circuit adds to the total resistance of the circuit (this is sometimes called the equivalent resistance). Requiv = R1 + R2 + R3... Total resistance (ohms) Individual resistances (W)
6
Equivalent resistance in a series circuit
Light bulbs, resistors, motors, and heaters usually have much greater resistance than wires and batteries.
7
Calculate current 1) You are asked to calculate current. 2) You are given the voltage and resistances. 3) Use Ohm’s law, I = V÷R, and add the resistance in series. 4) Solve: Resistance = R1 + R2 + R3 = 1Ω + 1Ω + 1Ω = 3Ω Current, I = (1.5 V) ÷ (3Ω)=0.5 A How much current flows in a circuit with a 1.5-volt battery and three 1 ohm resistances (bulbs) in series?
8
Voltage in a series circuit
Each separate resistance creates a voltage drop as the current passes through. As current flows along a series circuit, each type of resistor transforms some of the electrical energy into another form of energy Ohm’s law is used to calculate the voltage drop across each resistor.
10
Series and Parallel Circuits
In parallel circuits the current can take more than one path. Because there are multiple branches, the current is not the same at all points in a parallel circuit.
12
20.1 Series and Parallel Circuits
Sometimes these paths are called branches. The current through a branch is also called the branch current. When analyzing a parallel circuit, remember that the current always has to go somewhere. The total current in the circuit is the sum of the currents in all the branches. At every branch point the current flowing out must equal the current flowing in. This rule is known as Kirchhoff’s current law.
14
Voltage and current in a parallel circuit
In a parallel circuit the voltage is the same across each branch because each branch has a low resistance path back to the battery. The amount of current in each branch in a parallel circuit is not necessarily the same. The resistance in each branch determines the current in that branch.
15
Advantages of parallel circuits
Parallel circuits have two big advantages over series circuits: 1. Each device in the circuit sees the full battery voltage. 2. Each device in the circuit may be turned off independently without stopping the current flowing to other devices in the circuit.
16
Calculate current 1) You are asked for the current. 2) You are given the voltage and resistance. 3) Use Ohm’s law: I = V ÷ R. 4) For the 3Ω bulb: I = (3 V) ÷ (3 Ω) = 1 A. For the 0.5 Ω bulb: I = (3 V) ÷ (0.5 Ω) = 6 A. The battery must supply the current for both bulbs, which adds up to 7 amps. Two bulbs with different resistances are connected in parallel to batteries with a total voltage of 3 volts. Calculate the total current supplied by the battery.
17
Resistance in parallel circuits
Adding resistance in parallel provides another path for current, and more current flows. When more current flows for the same voltage, the total resistance of the circuit decreases. This happens because every new path in a parallel circuit allows more current to flow for the same voltage.
19
Adding resistance in parallel circuits
1) You are asked for the resistance. 2) You are given the circuit diagram and resistances. 3) Use the rule for parallel resistances. 4) Solve: 1/R total = 1/2 Ω + 1/4 Ω = 2/4 Ω +1/4 Ω = 3/4 Ω R= 4/3 Ω = Ω A circuit contains a 2 ohm resistor and a 4 ohm resistor in parallel. Calculate the total resistance of the circuit.
20
Analysis of Circuits All circuits work by manipulating currents and voltages. The process of circuit analysis means figuring out what the currents and voltages in a circuit are, and also how they are affected by each other. Three basic laws are the foundation of circuit analysis.
21
Three circuit laws
22
Reviewing terms
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.