Presentation is loading. Please wait.

Presentation is loading. Please wait.

Splash Screen.

Similar presentations


Presentation on theme: "Splash Screen."— Presentation transcript:

1 Splash Screen

2 Concept

3 Find the 20th term of the arithmetic sequence 3, 10, 17, 24, … .
Find the nth Term Find the 20th term of the arithmetic sequence 3, 10, 17, 24, … . Step 1 Find the common difference. 24 – 17 = 7 17 – 10 = 7 10 – 3 = 7 So, d = 7. Example 1

4 an = a1 + (n – 1)d nth term of an arithmetic sequence
Find the nth Term Step 2 Find the 20th term. an = a1 + (n – 1)d nth term of an arithmetic sequence a20 = 3 + (20 – 1)7 a1 = 3, d = 7, n = 20 = or 136 Simplify. Answer: The 20th term of the sequence is 136. Example 1

5 Find the 17th term of the arithmetic sequence 6, 14, 22, 30, … .
B. 140 C. 146 D. 152 Example 1

6 d = –6 – (–8) or 2; –8 is the first term.
Write Equations for the nth Term A. Write an equation for the nth term of the arithmetic sequence below. –8, –6, –4, … d = –6 – (–8) or 2; –8 is the first term. an = a1 + (n – 1)d nth term of an arithmetic sequence an = –8 + (n – 1)2 a1 = –8 and d = 2 an = –8 + (2n – 2) Distributive Property an = 2n – 10 Simplify. Answer: an = 2n – 10 Example 2A

7 an = a1 + (n – 1)d nth term of an arithmetic sequence
Write Equations for the nth Term B. Write an equation for the nth term of the arithmetic sequence below. a6 = 11, d = –11 First, find a1. an = a1 + (n – 1)d nth term of an arithmetic sequence 11 = a1 + (6 – 1)(–11) a6 = 11, n = 6, and d = –11 11 = a1 – 55 Multiply. 66 = a1 Add 55 to each side. Example 2B

8 Then write the equation.
Write Equations for the nth Term Then write the equation. an = a1 + (n – 1)d nth term of an arithmetic sequence an = 66 + (n – 1)(–11) a1 = 66, and d = –11 an = 66 + (–11n + 11) Distributive Property an = –11n + 77 Simplify. Answer: an = –11n + 77 Example 2B

9 A. Write an equation for the nth term of the arithmetic sequence below
A. an = –9n – 21 B. an = 9n – 21 C. an = 9n + 21 D. an = –9n + 21 Example 2A

10 B. Write an equation for the nth term of the arithmetic sequence below
B. Write an equation for the nth term of the arithmetic sequence below. a4 = 45, d = 5 A. an = 5n + 25 B. an = 5n – 20 C. an = 5n + 40 D. an = 5n + 30 Example 2B

11 Find the arithmetic means in the sequence 21, ___, ___, ___, 45, … .
Find Arithmetic Means Find the arithmetic means in the sequence 21, ___, ___, ___, 45, … . Step 1 Since there are three terms between the first and last terms given, there are or 5 total terms, so n = 5. Step 2 Find d. an = a1 + (n – 1)d Formula for the nth term 45 = 21 + (5 – 1)d n = 5, a1 = 21, a5 = 45 45 = d Distributive Property 24 = 4d Subtract 21 from each side. 6 = d Divide each side by 4. Example 3

12 Step 3 Use the value of d to find the three arithmetic means.
Find Arithmetic Means Step 3 Use the value of d to find the three arithmetic means. +6 Answer: The arithmetic means are 27, 33, and 39. Example 3

13 Find the three arithmetic means between 13 and 25.
Example 3

14 Concept

15 We need to find n before we can use one of the formulas.
Use the Sum Formulas Find the sum … + 80. Step 1 a1 = 8, an = 80, and d = 12 – 8 or 4. We need to find n before we can use one of the formulas. an = a1 + (n – 1)d nth term of an arithmetic sequence 80 = 8 + (n – 1)(4) an = 80, a1 = 8, and d = 4 80 = 4n + 4 Simplify. 19 = n Solve for n. Example 4

16 Step 2 Use either formula to find Sn.
Use the Sum Formulas Step 2 Use either formula to find Sn. Sum formula a1 = 8, n = 19, d = 4 Simplify. Answer: 836 Example 4

17 Find the sum … + 68. A. 318 B. 327 C. 340 D. 365 Example 4

18 Step 1 Since you know a1, an, and Sn, use to find n.
Find the First Three Terms Find the first three terms of an arithmetic series in which a1 = 14, an = 29, and Sn = 129. Step 1 Since you know a1, an, and Sn, use to find n. Sum formula Sn = 129, a1 = 14, an = 29 Simplify. Divide each side by 43. Example 5

19 an = a1 + (n – 1)d nth term of an arithmetic sequence
Find the First Three Terms Step 2 Find d. an = a1 + (n – 1)d nth term of an arithmetic sequence 29 = 14 + (6 – 1)d an = 29, a1 = 14, n = 6 15 = 5d Subtract 14 from each side. 3 = d Divide each side by 5. Example 5

20 Step 3 Use d to determine a2 and a3. a2 = 14 + 3 or 17
Find the First Three Terms Step 3 Use d to determine a2 and a3. a2 = or 17 a3 = or 20 Answer: The first three terms are 14, 17, and 20. Example 5

21 Find the first three terms of an arithmetic series in which a1 = 11, an = 31, and Sn = 105.
B. 11, 16, 21 C. 11, 17, 23, 30 D. 17, 23, 30, 36 Example 5

22 Homework P. 670 # 3-12 (x3), 16 – 52 (x4) skip 32

23 End of the Lesson


Download ppt "Splash Screen."

Similar presentations


Ads by Google