Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hamiltonian Flow in Coulomb Gauge Yang-Mills theory

Similar presentations


Presentation on theme: "Hamiltonian Flow in Coulomb Gauge Yang-Mills theory"— Presentation transcript:

1 Hamiltonian Flow in Coulomb Gauge Yang-Mills theory
H. Reinhardt Tübingen Collaborators: M. Leder, J. Pawlowski, A.Weber

2 Hamiltonian approach to YMT
canonical quantization

3 Hamiltonian approach to YMT
canonical quantization Coulomb gauge

4 Hamiltonian approach to YMT
canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of

5 Hamiltonian approach to YMT
canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of FRG flow equations

6 Hamiltonian approach to YMT
canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of FRG flow equations infinite tower of flow eqs. for static propagators indirect determination of truncation of flow equations Ansätze for propagators initial condition to the flow (UV-regime)

7 Variational approach trial ansatz : C.Feuchter & H. R. PRD70(2004)
gluon propagator determined from variational kernel

8 D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007)
Numerical results D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) gluon energy

9 Static gluon propagator in D=3+1
G. Burgio, M.Quandt , H.R., PRL102(2009)

10 W. Schleifenbaum, M. Leder, H.R. PRD73(2006)
running coupling W. Schleifenbaum, M. Leder, H.R. PRD73(2006)

11 Coulomb potential

12 D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007)
ghost formfactor gost propagator ghost form factor D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) Input:

13 ghost formfactor: lattice
see talk by G. Burgio

14 D. Campagnari, H. R., A. Weber, Phys. Rev D(2009)
Perturbation theory D. Campagnari, H. R., A. Weber, Phys. Rev D(2009) Rayleigh-Schrödinger PT vacuum (QED) ß-function

15 The color dielectric function of the QCD vacuum
ghost propagator dielectric „constant“ H.Reinhardt,PRL101 (2008)

16 The color dielectric function of the QCD vacuum
ghost propagator dielectric „constant“ horizon condition: : QCD vacuum-perfect color dia-electricum H.Reinhardt,PRL101 (2008)

17 The color dielectric function of the QCD vacuum
ghost propagator dielectric „constant“ horizon condition: : QCD vacuum-perfect color dia-electricum QED: screening H.Reinhardt,PRL101 (2008)

18 no free color charges in the vacuum: confinement

19 Confinement scenarios
Gribov-Zwanziger dual superconductor horizon condition perfect dia-electricum

20 Can we avoid the input of the horizon condition
? Yes we can : RG-flow equation: indirect test of our ansatz for the wave functional M. Leder, J. Pawlowski, H. R, A. Weber

21 Renormalization group flow equation

22 Renormalization group flow equation
Wetterich

23 Effective action: 1PI-vertices

24

25 RG-flow equation Wetterich 1993

26 RG-flow equation propagator flow

27 Hamiltonian flow

28 Hamiltonian flow in Coulomb gauge YMT

29 RG- flow equation

30 Hamiltonian FRG flow equation
no ansatz for indirect specification of truncation of flow equation form of the propagators&vertices assumed intial condition to propagators&vertices in the UV

31 Truncation of FRG flow equation
gluon propagator ghost propagator ghost-gluon-vertex no tadpoles ghost dominance no gluon loops

32 RG- flow equation ghost dominance

33 Integrating the RG-flow equation

34

35 ghost form factor d(p)

36 gluon energy

37 FRG & DSE Replacement in loop integrals of FRG:
FRG flow eq DSE-variational approach

38 RG-Flow vs DSE: ghost form factor

39 RG-Flow vs DSE: gluon energy

40 RG-Flow vs DSE: running coupling

41 IR- exponents satisfy sum rule smaller than for DSE

42 Summary & Conclusion Hamiltonian FRG-flow equation of YMT in Coulomb gauge : Input: ghost dominance scaling of ghost in the IR output : horizon condition YM vacuum=perfect dual superconductor IR-exponents satisfy sum rule smaller than in variational approach outlook: Coulomb form factor inclusion of quarks

43 Summary & Conclusion Hamiltonian approach to YMT in Coulomb gauge
variational solution of the YM Schrödinger eq. , input: gluon confinement quark confinement satisfactory agreement with lattice data Hamiltonian FRG-flow equation: horizon condition IR-exponents smaller than in variational approach dielectric function of the YM vacuum YM vacuum=perfect dual superconductor

44 Thanks for your attention

45

46 non-perturbative approaches to continuum Yang-Mills theory
DSE FRG flow equations Variational Hamiltonian approch

47 Hamiltonian Flow in Coulomb Gauge Yang-Mills theory
Introduction Hamilton approach to YMT FRG flow equation Numerical results Conclusions

48 Variational approach trial ansatz : C.Feuchter & H. R. PRD70(2004)
gluon propagator determined from variational kernel


Download ppt "Hamiltonian Flow in Coulomb Gauge Yang-Mills theory"

Similar presentations


Ads by Google