Download presentation
Presentation is loading. Please wait.
Published byAlan Charles Modified over 6 years ago
1
Hamiltonian Flow in Coulomb Gauge Yang-Mills theory
H. Reinhardt Tübingen Collaborators: M. Leder, J. Pawlowski, A.Weber
2
Hamiltonian approach to YMT
canonical quantization
3
Hamiltonian approach to YMT
canonical quantization Coulomb gauge
4
Hamiltonian approach to YMT
canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of
5
Hamiltonian approach to YMT
canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of FRG flow equations
6
Hamiltonian approach to YMT
canonical quantization Coulomb gauge variational solution ansatz for vacuum wave functional DSE to calculate minimization of FRG flow equations infinite tower of flow eqs. for static propagators indirect determination of truncation of flow equations Ansätze for propagators initial condition to the flow (UV-regime)
7
Variational approach trial ansatz : C.Feuchter & H. R. PRD70(2004)
gluon propagator determined from variational kernel
8
D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007)
Numerical results D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) gluon energy
9
Static gluon propagator in D=3+1
G. Burgio, M.Quandt , H.R., PRL102(2009)
10
W. Schleifenbaum, M. Leder, H.R. PRD73(2006)
running coupling W. Schleifenbaum, M. Leder, H.R. PRD73(2006)
11
Coulomb potential
12
D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007)
ghost formfactor gost propagator ghost form factor D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007) Input:
13
ghost formfactor: lattice
see talk by G. Burgio
14
D. Campagnari, H. R., A. Weber, Phys. Rev D(2009)
Perturbation theory D. Campagnari, H. R., A. Weber, Phys. Rev D(2009) Rayleigh-Schrödinger PT vacuum (QED) ß-function
15
The color dielectric function of the QCD vacuum
ghost propagator dielectric „constant“ H.Reinhardt,PRL101 (2008)
16
The color dielectric function of the QCD vacuum
ghost propagator dielectric „constant“ horizon condition: : QCD vacuum-perfect color dia-electricum H.Reinhardt,PRL101 (2008)
17
The color dielectric function of the QCD vacuum
ghost propagator dielectric „constant“ horizon condition: : QCD vacuum-perfect color dia-electricum QED: screening H.Reinhardt,PRL101 (2008)
18
no free color charges in the vacuum: confinement
19
Confinement scenarios
Gribov-Zwanziger dual superconductor horizon condition perfect dia-electricum
20
Can we avoid the input of the horizon condition
? Yes we can : RG-flow equation: indirect test of our ansatz for the wave functional M. Leder, J. Pawlowski, H. R, A. Weber
21
Renormalization group flow equation
22
Renormalization group flow equation
Wetterich
23
Effective action: 1PI-vertices
25
RG-flow equation Wetterich 1993
26
RG-flow equation propagator flow
27
Hamiltonian flow
28
Hamiltonian flow in Coulomb gauge YMT
29
RG- flow equation
30
Hamiltonian FRG flow equation
no ansatz for indirect specification of truncation of flow equation form of the propagators&vertices assumed intial condition to propagators&vertices in the UV
31
Truncation of FRG flow equation
gluon propagator ghost propagator ghost-gluon-vertex no tadpoles ghost dominance no gluon loops
32
RG- flow equation ghost dominance
33
Integrating the RG-flow equation
35
ghost form factor d(p)
36
gluon energy
37
FRG & DSE Replacement in loop integrals of FRG:
FRG flow eq DSE-variational approach
38
RG-Flow vs DSE: ghost form factor
39
RG-Flow vs DSE: gluon energy
40
RG-Flow vs DSE: running coupling
41
IR- exponents satisfy sum rule smaller than for DSE
42
Summary & Conclusion Hamiltonian FRG-flow equation of YMT in Coulomb gauge : Input: ghost dominance scaling of ghost in the IR output : horizon condition YM vacuum=perfect dual superconductor IR-exponents satisfy sum rule smaller than in variational approach outlook: Coulomb form factor inclusion of quarks
43
Summary & Conclusion Hamiltonian approach to YMT in Coulomb gauge
variational solution of the YM Schrödinger eq. , input: gluon confinement quark confinement satisfactory agreement with lattice data Hamiltonian FRG-flow equation: horizon condition IR-exponents smaller than in variational approach dielectric function of the YM vacuum YM vacuum=perfect dual superconductor
44
Thanks for your attention
46
non-perturbative approaches to continuum Yang-Mills theory
DSE FRG flow equations Variational Hamiltonian approch
47
Hamiltonian Flow in Coulomb Gauge Yang-Mills theory
Introduction Hamilton approach to YMT FRG flow equation Numerical results Conclusions
48
Variational approach trial ansatz : C.Feuchter & H. R. PRD70(2004)
gluon propagator determined from variational kernel
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.