Download presentation
Presentation is loading. Please wait.
Published byKristopher Carroll Modified over 6 years ago
1
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY
CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN Department of Science and Mathematics Coker College Hartsville, SC TH05
2
Spectroscopists
3
Microwave Spectroscopists
Frequency Narrow line-width Small Error Intensity Question: Can we use experimental intensities more effectively?
4
Conformational Energy Differences
pre-Balle/Flygare1 pulsed jet cavity static cell w/ accurate relative intensities experimental energy differences often reported 1Balle, T.J., Flygare, W.H., Rev. Sci. Instrum. 1981, 52 (1), 33–45.
5
Conformational Energy Differences
post Balle/Flygare1 pulsed jet (and rise of computing power) cooling in pulsed jet use of a cavity – relative intensities not accurate experimental relative intensities seldom reported 1Balle, T.J., Flygare, W.H., Rev. Sci. Instrum. 1981, 52 (1), 33–45.
6
Conformational Energy Differences
Chirped-pulse microwave spectroscopy provides accurate relative intensities2 do relative intensities agree with energy differences between conformers? 2Gordon G. Brown, Brian C. Dian, Kevin O. Douglass, Scott M. Geyer, Steven T. Shipman, and Brooks H. Pate, Rev. Sci. Instrum. 79 (2008)
7
Hypothesis: Relative intensities are proportional to the conformer populations present before the expansion occurs (if we use He gas). We can use relative intensities to measure experimental relative energies between conformers.
8
Example: Ethylperoxyl radical
intermediate in ethanol combustion two conformers, gauche and trans conformation energies determine most likely reaction path reaction kinetics
9
Relaxation of conformers in pulsed valves3
3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990)
10
Relaxation of conformers in pulsed valves3
“When helium was used as the carrier gas all of the conformers showed little if any evidence of conformer relaxation… That is, the signal intensities were consistent with the equilibrium ratio of concentrations (Keq) predicted be the energy difference (ΔE) between conformers at T~298K, Keq = f exp(-ΔE/RT) ”1 f = ratio of numbers of equivalent forms (e.g. 2 gauche vs. 1 trans) 3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990)
11
Relaxation of conformers in pulsed valves3
3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990)
12
Coker College CP-FTMW Spectrometer4
4Miranda Smith, Brandon D. Short, April M. Ruthven, K. Michelle Thomas, Michael J. Hang, Gordon G. Brown, J. Mol. Spectr., 307, (2015)
13
Coker College CP-FTMW Spectrometer
14
Target Molecules propanal cis gauche
3R.S. Ruoff, T.D. Klots, T. Emilsson, and H.S. Gutowsky, J. Chem. Phys. 93, (1990)
15
Intensity Ratio Predictions
ethyl formate (gauche/trans) propanal (gauche/cis) predicted equilibrium ratio in valve (T = 296K) 1.63 0.43 predicted transition intensities in jet (1K) 0.86 0.52 Instrument response 2.0 1.5 overall predicted intensity ratio 2.8 0.34
16
Preliminary experiments: ethyl formate
transition: 202 – 101 each trial: 100 avgs Predicted ratio = 2.8 Expt. 1 ratio = 0.15 set carrier frequency to ν – 200 MHz (10762 MHz and 13859 MHz) trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 21.36 3.84 0.18 2 23.26 3.62 0.16 3 28.84 2.41 0.08 4 23.64 3.22 0.14 5 21.48 3.94 6 21.63 3.77 0.17 7 25.85 4.75 8 27.13 2.42 0.09 9 25.92 3.57 10 26.21 3.38 0.13 avg 24.53 3.49 0.15 std dev 2.62 0.70 0.04
17
Preliminary experiments: ethyl formate
trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 8.83 4.42 0.50 2 9.15 4.29 0.47 3 8.84 4 8.72 4.44 0.51 5 9.53 4.53 0.48 6 9.18 4.57 7 9.75 4.73 8 10.19 4.75 9 9.36 4.74 10 10.35 4.99 avg 9.39 4.59 0.49 std dev 0.57 0.21 0.02 Experiment 2: repeat Experiment 1 on different day transition: 202 – 101 each trial: 100 avgs Predicted ratio = 2.8 Expt. 1 ratio = 0.15 Expt. 2 ratio = 0.49 set carrier frequency to ν – 200 MHz (10762 MHz and 13859 MHz)
18
Preliminary experiments: ethyl formate
repeat Experiment 2 on same day with different carrier frequencies transition: 202 – 101 each trial: 100 avgs Predicted ratio = 2.8 Expt. 1 ratio = 0.15 Expt. 2 ratio = 0.49 Expt. 3 ratio = 0.79 set carrier frequency to ν – 300 MHz (10662 MHz and 13759 MHz) trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 8.16 6.47 0.79 2 8.04 6.30 0.78 3 7.65 6.76 0.88 4 8.42 6.31 0.75 5 8.20 6.52 6 7.75 6.29 0.81 7 8.66 6.22 0.72 8 7.94 6.51 0.82 9 8.18 6.50 10 8.34 avg 8.13 6.44 std dev 0.30 0.16 0.04
19
Preliminary experiments: ethyl formate
trans 10962 MHz gauche 14059 MHz ratio (g/t) 1 24.53 3.49 0.15 2 9.39 4.59 0.49 3 8.13 6.44 0.79 4 7.45 1.12 5 19.09 3.42 0.18 6 17.89 2.99 0.17 7 17.06 3.13 8 17.02 2.94 9 12.65 3.51 0.28 10 12.25 3.44 11 19.47 2.45 0.13 12 7.66 5.48 0.71 13 4.20 1.08 0.26 14 11.70 3.08 15 11.00 3.34 0.30 16 11.42 3.14 0.27 avg 13.18 3.35 std dev 1.34 0.20 Further Experiments: transition: 202 – 101 Predicted ratio = 2.8
20
Preliminary experiments: propanal
transition: 101 – 000 each trial: 500 avgs Predicted ratio = 0.34 Expt. 1 ratio = 0.036 set carrier frequency to MHz and 8000 MHz Room Temp (296K) cis 10493 MHz gauche 8463 MHz ratio (g/t) 1 2.51 0.086 0.034 2 2.63 0.084 0.032 3 2.41 0.090 0.037 4 2.432 0.094 0.039 5 2.386 0.096 0.040 6 2.394 0.092 7 3.981 0.100 0.025 8 3.492 0.029 9 2.372 0.105 0.044 10 2.59 0.112 0.043 avg 2.720 0.036 std dev 0.555 0.009 0.006
21
Preliminary experiments: propanal
transition: 101 – 000 each trial: 500 avgs Predicted ratio = 0.34 (296K) Expt. 1 ratio = (296K) Predicted ratio = 0.44 (354K) Expt. 2 ratio = (354K) set carrier frequency to MHz and 8000 MHz Heated nozzle (354K) cis 10493 MHz gauche 8463 MHz ratio (g/t) 1 2.211 0.1889 0.085 2 2.142 0.1842 0.086 3 2.228 0.1912 4 2.347 0.1965 0.084 5 2.348 0.1758 0.075 6 2.567 0.1789 0.070 7 2.443 0.1968 0.081 8 2.445 0.1911 0.078 9 2.47 0.1779 0.072 10 2.519 0.1897 avg 2.372 0.187 0.079 std dev 0.142 0.008 0.006
22
Preliminary experiments: propanal
transition: 101 – 000 each trial: 500 avgs Predicted ratio = 0.34 (296K) Expt. 1 ratio = (296K) Predicted ratio = 0.44 (354K) Expt. 2 ratio = (354K) Expt. 3 ratio = (296K) set carrier frequency to MHz and 8000 MHz Room Temp (296K) cis 10493 MHz gauche 8463 MHz ratio (g/t) 1 1.697 0.1093 0.064 2 1.709 0.1139 0.067 3 1.695 0.1219 0.072 4 1.597 0.1321 0.083 5 1.765 0.1361 0.077 6 1.658 0.1277 7 1.644 0.1268 8 1.71 0.1373 0.080 9 1.72 0.1524 0.089 10 1.618 0.1344 avg 1.681 0.129 std dev 0.051 0.012 0.008
23
Experimental consistency (?)
all experimental parameters same valve timing valve shims backing pressure same tank of chemical/He mix microwave pulse power
24
Conclusion Future Work
It is difficult to reproduce signal intensities with a pulsed jet. We seem to observe conformer relaxation despite using helium as a carrier gas. Future Work Compare relative intensities of conformer spectra, not individual transitions.
25
Acknowledgements American Chemical Society – Petroleum Research Fund (56530-UR6) SCICU Student-Faculty Research Program Coker College
27
Preliminary experiments: isopropyl alcohol
transition: 101 – 000 each experiment: 10 trials of 100 avgs each set carrier frequency to MHz – measured both transitions with same measurements Experiment date trans 13254 MHz gauche 13407 MHz ratio (g/t) 3/14 0.64 1.30 2.03 3/15 0.43 1.15 2.67 0.91 1.39 1.53 avg 2.08 std dev 0.57
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.