Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ksenija Jovanović.

Similar presentations


Presentation on theme: "Ksenija Jovanović."— Presentation transcript:

1 Ksenija Jovanović

2 Cilj vežbe Cilj studije slučaja je određivanje osnovnih elemenata poslovnog modela na primeru svetske mreže Google

3 Poslovni model Poslovni model opisuje kako jedna organizacija kreira, isporučuje ekonomsku, socijalnu i druge vrednosti svojim korisnicima

4 Poslovni model Poslovni model se može analizirati na više načina
Jedan od načina je analiza lanca vrednosti po metodlogiji M. Portera Za razumevanje suštine poslovnog modela analiziraju se elementi glavnog procesa

5 Lanac vrednosti

6 Inovacije Invencija je izum, ideja, poboljšanje
Inovacija (uvođenje nečeg novog) predstavlja proces primene invencije u praksu Osnovne vrste inovacija (Izvor OEBS): Inovacije proizvoda Inovacije procesa Marketing inovacije Organizaciona inovacija

7 Zadaci Pažljivo pročitajte tekst nekoliko puta
Hronološki složite najznačajnije činjenice Koje su lične karakteristike osnivača Google? Koji su ključni elementi poslovnog modela? Navedite primenjene inovacije? Kojoj grupi inovacija pripadaju?

8 David Leedal1, Keith Beven1,2, Jeff Neal3, Paul Bates3, Neil Hunter4
BHS2010: A case study of tools for manipulating and visualizing large flood risk management data sources David Leedal1, Keith Beven1,2, Jeff Neal3, Paul Bates3, Neil Hunter4 1Lancaster Environment Centre, Lancaster University. 2Geocentrum, Uppsala University, Uppsala, Sweden. 3Bristol University. 4 JBA consulting.

9 Introduction Three objectives for a useful flood risk map visualisation tool: Aggregate information in a form that can be assimilated and queried by the end user Provide sensory stimulus and user interaction to aid understanding of unfamiliar concepts Produce a modular unit that can function as the target for disparate model results within broader web/GIS environments –encourage code/API standardisation

10 Information aggregation
Spatial modelling studies produce large amounts of data. A 2D inundation study becomes 3D when considering velocity which becomes 4D when considering uncertainty. We need to aggregate the information. Client and server approach: database (PostgreSQL, mySQL) + scripting (PHP, pearl) Central data store, secure, probably the right way to go Slower, more complicated, needs administering Local storage approach: save data on local machine (matlab file, CSV) + associated data processing program (matlab, R) Fast and independent Only suitable for small scale applications

11 User interaction Once the data is stored, there must be some method for the user to interact with it Static interaction (GIS) An experienced user can retrieve, act on and plot probabilistic inundation data and map backdrops producing high quality analysis and visual results Steep learning curve Dynamic interaction (matlab, Google maps+DHTML) Familiar ‘widgets’ such as a slider can be used to dynamically query the underlying data base –intuitive user experience Limited to the functionality provided by the application designer

12 Modularity and standardisation
In general, each risk map study produces data in an ad-hoc format depending on the preferences of the programmer. Instead, it would be nice to have a standard format for output to work towards. If widely adopted, a visualisation tool could supply: A set of standard requirements for source data eg., attribute table headings Documentation for the georeferencing format and extent of the study site eg., a bounding box in a standard coordinate reference frame In return, the visualisation tool should comply with external standards such as those of the Google maps API if used

13 Examples (matlab) Matlab graphic user interface interactive visualisation tool using results produced by Neil Hunter (JBA) for Mexborough (S. Yorkshire UK) Local data storage General interface: third party risk map study provides inundation probability data matrix and background image – program does the rest Interface includes: Slider for probability selection Point and click marker for single location query Popup menu for return period/depth scenario Depth probability figure dynamically linked to point marker

14 Examples (matlab)

15 Examples (matlab) Zoomed view shows: •popup menu •point marker
•interactive graph

16 Examples (matlab) Show all probabilities option: •view selector
•point marker •colour-coded probabilities •interactive g

17 Examples (Google maps)

18 Examples (Google maps)

19 Examples (Google maps)

20 Examples (Google maps)

21 Examples (Google maps)
Google maps data viewer includes: •Slider for interactive probability selection •Text box for word-based descriptions •Access to standard Google maps tools (pan zoom etc) •Tutorial tips and definitions

22 Examples (QGis) QGisdata viewer includes: •Colour coding
•Topology (linking between layers) •Advanced georeferencing •Map switching

23 Examples (QGis)

24 Acknowledgement www.floodrisk.org.uk EPSRC Grant: EP/FP202511/1
The research reported in this presentation was conducted as part of the Flood Risk Management Research Consortium with support from the: •Engineering and Physical Sciences Research Council •Department of Environment, Food and Rural Affairs/Environment Agency Joint Research Programme •United Kingdom Water Industry Research •Office of Public Works Dublin •Northern Ireland Rivers Agency Data were provided by the EA and the Ordnance Survey. EPSRC Grant: EP/FP202511/1


Download ppt "Ksenija Jovanović."

Similar presentations


Ads by Google