Download presentation
Presentation is loading. Please wait.
Published byLoraine Marshall Modified over 6 years ago
1
Institute of Cosmology and Gravitation, University of Portsmouth
Cosmological Tests of Modified Gravity Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth “Cosmological Tests of Modified Gravity” KK, Report of Progress of Physics 79 (2016) no.4, , arXiv:
2
Cosmic acceleration Many independent data sets indicate the expansion of the Universe is accelerating Standard cosmology requires 70% of unknown ‘dark’ energy
3
Dark energy v Dark gravity
Cosmological constant is the simplest candidate but the theoretical prediction is more than 50 orders of magnitude larger than the observed values “Most embarrassing observation in physics” Standard model of cosmology is based on GR but we have never tested GR on cosmological scales cf. precession of perihelion dark planet v GR
4
Is cosmology probing breakdown of GR on large scales ?
5
Assuming GR Dark Matter Dark Energy curvature potential Curvature
Psaltis Living Rev. Relativity 11 (2008), 9 curvature Grav Probe B Hulse-Taylor 1 Rsun Moon Mercury 1 AU potential 10 kpc Curvature 10 Mpc Dark Matter Dark Energy Gravitational potential
6
General Relativity Modified Gravity Screening mechanism
Grav Probe B General Relativity Hulse-Taylor 1 Rsun Moon Mercury 1 AU Screening mechanism Curvature 10 kpc 10 Mpc Dark Matter Cosmological tests of gravity Modified Gravity Gravitational potential
7
General picture Largest scales
gravity is modified so that the universe accelerates without dark energy Large scale structure scales gravity is still modified by a fifth force from scalar graviton model independent tests of GR Small scales (solar system) GR is recovered Modified gravity Scalar tensor GR Linear scales Clifton, Ferreira, Padilla & Skordis Phys. Rept. 513 (2012) 1
8
Why we need screening mechanism?
Brans-Dicke gravity quasi-static approximations (neglecting time derivatives) : fifth force
9
Constraints on BD parameter
Solutions PPN parameter This constraint excludes any detectable modifications in cosmology
10
Screening mechanism Require screening mechanism to restore GR
recovery of GR must be environmental dependent make the scalar short-ranged using (chameleon) make the kinetic term large to suppress coupling to matter using (dilaton/symmetron) or (k-mouflage) (Vainshtein) Break equivalence principle remove the fifth force from baryons (interacting DE models in Einstein frame)
11
Chameleon mechanism Scalar is coupled to matter
Depending on density, the mass can change It is easier to understand the dynamics in Einstein frame
12
Chameleon mechanism Khoury & Weltman astro-ph/
13
Thin shell condition Khoury & Weltman astro-ph/ If the thin shell condition is satisfied, only the shell of the size contributes to the fifth force Screening is determined by the gravitational potential of the object Silvestri
14
Behaviour of gravity There regimes of gravity
Understandings of non-linear clustering require N-body simulations where the non-linear scalar equation needs to be solved In most models, the scalar mode obeys non-linear equations describing the transition from the scalar tensor theory on large scales to GR on small scales Scalar tensor GR
15
N-body simulations GR Modified gravity models superposition of forces
the non-linear nature of the scalar field equation implies that the superposition rule does not hold It is required to solve the non-linear scalar equation directly on a mesh a computational challenge! The breakdown of the superposition rule has interesting consequences
16
N-body Simulations for MG
Multi-level adaptive mesh refinement solve Poisson equation using a linear Gauss-Seidel relaxation add a scalar field solver using a non-linear Gauss Seidel relaxation ECOSMOG Li, Zhao, Teyssier, KK JCAP1201 (2012) 051 MG-GADGET Puchwein, Baldi, Springel MNRAS (2013) ISIS Llinares, Mota, Winther A&A (2014) 562 A78 DGPM, Schmidt PRD80, Modified Gravity Simulations comparison project Winther, Shcmidt, Barreira et.al. arXiv:
17
Where to test GR GR is recovered in high dense regions Scalar tensor
(we consider the chameleon mechanism here) GR is recovered in high dense regions GR is restored in massive dark matter halos Environmental effects Even if dark matter halo itself is small, if it happens to live near massive halos, GR is recovered Using simulations, we can develop criteria to identify the places where GR is not recovered Scalar tensor GR Zhao, Li, KK Phy. Rev. Lett. 107 (2011)
18
Environmental effects
Zhao, Li, Koyama GR is recovered even in small halos nearby big halos Large bubbles =better screened (GR is recovered)
19
Environmental dependence
Difference between lensing and dynamical mass environment: O(1) difference no difference O(1) difference no difference
20
Testing chameleon gravity
Outskirt of clusters Terukina. et.al. PRD , JCAP 48 X-ray clusters from XCS compared with lensing (shear) from CFHTLS Dynamical mass can be inferred from X-ray and SZ Wilcox et.al ,
21
Creating a screening map
It is essential to find places where GR is not recovered Small galaxies in underdense regions SDSS galaxies within 200 Mpc Cabre, Vikram, Zhao, Jain, KK JCAP (2012) 034 (we consider the chameleon mechanism here) GR is recovered
22
Tests of chameleon gravity
dwarf galaxies in voids strong modified gravity effects Galaxies are brighter Cerpheid periods change Various other tests Jain & VanderPlas JCAP 1110 (2011) 032 Davis et.al. Phys. Rev. D85 (2012) Jain et.al. ApJ 779 (2013) 39 Vikram et.al. JCAP1308 (2013) 020 Hui, Nicolis & Stubbs Phys. Rev. D80 (2009)
23
Constraints on chameleon gravity
Non-linear regime is powerful for constraining chameleon gravity Astrophysical tests could give better constraints than the solar system tests and can be done by “piggybacking” ongoing surveys Jain et.al Interaction range of the extra force that modifies GR in the cosmological background GR
24
Summary In the next decade, we may be able to detect the failure of GR on cosmological scales Linear scales model independent tests of gravity Non-linear scales novel astrophysical tests of gravity (in a model dependent way) It is required to develop theoretical models from fundamental theory SUMIRE EUCLID
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.