Download presentation
Presentation is loading. Please wait.
1
St. Edward’s University
Slides Prepared by JOHN S. LOUCKS St. Edward’s University © South-Western/Thomson Learning
2
Chapter 12 Tests of Goodness of Fit and Independence
Goodness of Fit Test: A Multinomial Population Tests of Independence: Contingency Tables Goodness of Fit Test: Poisson and Normal Distributions
3
Goodness of Fit Test: A Multinomial Population
1. Set up the null and alternative hypotheses. 2. Select a random sample and record the observed frequency, fi , for each of the k categories. 3. Assuming H0 is true, compute the expected frequency, ei , in each category by multiplying the category probability by the sample size. continued
4
Goodness of Fit Test: A Multinomial Population
4. Compute the value of the test statistic. 5. Reject H0 if (where is the significance level and there are k - 1 degrees of freedom).
5
Example: Finger Lakes Homes (A)
Multinomial Distribution Goodness of Fit Test Finger Lakes Homes manufactures four models of prefabricated homes, a two-story colonial, a ranch, a split-level, and an A-frame. To help in production planning, management would like to determine if previous customer purchases indicate that there is a preference in the style selected.
6
Example: Finger Lakes Homes (A)
Multinomial Distribution Goodness of Fit Test The number of homes sold of each model for 100 sales over the past two years is shown below. Model Colonial Ranch Split-Level A-Frame # Sold
7
Example: Finger Lakes Homes (A)
Multinomial Distribution Goodness of Fit Test Notation pC = popul. proportion that purchase a colonial pR = popul. proportion that purchase a ranch pS = popul. proportion that purchase a split-level pA = popul. proportion that purchase an A-frame Hypotheses H0: pC = pR = pS = pA = .25 Ha: The population proportions are not pC = .25, pR = .25, pS = .25, and pA = .25
8
Example: Finger Lakes Homes (A)
Multinomial Distribution Goodness of Fit Test Expected Frequencies e1 = .25(100) = e2 = .25(100) = 25 e3 = .25(100) = e4 = .25(100) = 25 Test Statistic = = 10
9
Example: Finger Lakes Homes (A)
Multinomial Distribution Goodness of Fit Test Rejection Rule With = .05 and k - 1 = = 3 degrees of freedom Do Not Reject H0 Reject H0 2 7.81
10
Example: Finger Lakes Homes (A)
Multinomial Distribution Goodness of Fit Test Conclusion c2 = 10 > 7.81, so we reject the assumption there is no home style preference, at the .05 level of significance.
11
Test of Independence: Contingency Tables
1. Set up the null and alternative hypotheses. 2. Select a random sample and record the observed frequency, fij , for each cell of the contingency table. 3. Compute the expected frequency, eij , for each cell.
12
Test of Independence: Contingency Tables
4. Compute the test statistic. 5. Reject H0 if (where is the significance level and with n rows and m columns there are (n - 1)(m - 1) degrees of freedom).
13
Example: Finger Lakes Homes (B)
Contingency Table (Independence) Test Each home sold can be classified according to price and to style. Finger Lakes Homes’ manager would like to determine if the price of the home and the style of the home are independent variables. The number of homes sold for each model and price for the past two years is shown below. For convenience, the price of the home is listed as either $65,000 or less or more than $65,000. Price Colonial Ranch Split-Level A-Frame < $65, > $65,
14
Example: Finger Lakes Homes (B)
Contingency Table (Independence) Test Hypotheses H0: Price of the home is independent of the style of the home that is purchased Ha: Price of the home is not independent of the style of the home that is purchased Expected Frequencies Price Colonial Ranch Split-Level A-Frame Total < $99K > $99K Total
15
Example: Finger Lakes Homes (B)
Contingency Table (Independence) Test Test Statistic = = Rejection Rule With = .05 and (2 - 1)(4 - 1) = 3 d.f., Reject H0 if 2 > 7.81 Conclusion We reject H0, the assumption that the price of the home is independent of the style of the home that is purchased.
16
Goodness of Fit Test: Poisson Distribution
1. Set up the null and alternative hypotheses. 2. Select a random sample and a. Record the observed frequency, fi , for each of the k values of the Poisson random variable. b. Compute the mean number of occurrences, . 3. Compute the expected frequency of occurrences, ei , for each value of the Poisson random variable. continued
17
Goodness of Fit Test: Poisson Distribution
4. Compute the value of the test statistic. 5. Reject H0 if (where is the significance level and there are k - 2 degrees of freedom).
18
Example: Troy Parking Garage
Poisson Distribution Goodness of Fit Test In studying the need for an additional entrance to a city parking garage, a consultant has recommended an approach that is applicable only in situations where the number of cars entering during a specified time period follows a Poisson distribution.
19
Example: Troy Parking Garage
Poisson Distribution Goodness of Fit Test A random sample of 100 one-minute time intervals resulted in the customer arrivals listed below. A statistical test must be conducted to see if the assumption of a Poisson distribution is reasonable. # Arrivals Frequency
20
Example: Troy Parking Garage
Poisson Distribution Goodness of Fit Test Hypotheses H0: Number of cars entering the garage during a one-minute interval is Poisson distributed. Ha: Number of cars entering the garage during a one-minute interval is not Poisson distributed
21
Example: Troy Parking Garage
Poisson Distribution Goodness of Fit Test Estimate of Poisson Probability Function otal Arrivals = 0(0) + 1(1) + 2(4) (1) = 600 Total Time Periods = 100 Estimate of = 600/100 = 6 Hence,
22
Example: Troy Parking Garage
Poisson Distribution Goodness of Fit Test Expected Frequencies x f (x ) xf (x ) x f (x ) xf (x ) Total
23
Example: Troy Parking Garage
Poisson Distribution Goodness of Fit Test Observed and Expected Frequencies i fi ei fi - ei 0 or 1 or 10 or more
24
Example: Troy Parking Garage
Poisson Distribution Goodness of Fit Test Test Statistic Rejection Rule With = .05 and k - p - 1 = = 7 d.f. (where k = number of categories and p = number of population parameters estimated), Reject H0 if 2 > 14.07 Conclusion We cannot reject H0. There’s no reason to doubt the assumption of a Poisson distribution.
25
Goodness of Fit Test: Normal Distribution
1. Set up the null and alternative hypotheses. 2. Select a random sample and a. Compute the mean and standard deviation. b. Define intervals of values so that the expected frequency is at least 5 for each interval. c. For each interval record the observed frequencies 3. Compute the expected frequency, ei , for each interval. continued
26
Goodness of Fit Test: Normal Distribution
4. Compute the value of the test statistic. 5. Reject H0 if (where is the significance level and there are k - 3 degrees of freedom).
27
Example: Victor Computers
Normal Distribution Goodness of Fit Test Victor Computers manufactures and sells a general purpose microcomputer. As part of a study to evaluate sales personnel, management wants to determine if the annual sales volume (number of units sold by a salesperson) follows a normal probability distribution.
28
Example: Victor Computers
Normal Distribution Goodness of Fit Test A simple random sample of 30 of the salespeople was taken and their numbers of units sold are below. (mean = 71, standard deviation = 18.54)
29
Example: Victor Computers
Normal Distribution Goodness of Fit Test Hypotheses H0: The population of number of units sold has a normal distribution with mean and standard deviation Ha: The population of number of units sold does not have a normal distribution with mean 71 and standard deviation
30
Example: Victor Computers
Normal Distribution Goodness of Fit Test Interval Definition To satisfy the requirement of an expected frequency of at least 5 in each interval we will divide the normal distribution into 30/5 = 6 equal probability intervals.
31
Example: Victor Computers
Normal Distribution Goodness of Fit Test Interval Definition Areas = 1.00/6 = .1667 53.02 71 88.98 = (18.54) 63.03 78.97
32
Example: Victor Computers
Normal Distribution Goodness of Fit Test Observed and Expected Frequencies i fi ei fi - ei Less than 53.02 to 63.03 to 71.00 to 78.97 to More than Total 30 30
33
Example: Victor Computers
Normal Distribution Goodness of Fit Test Test Statistic Rejection Rule With = .05 and k - p - 1 = = 3 d.f., Reject H0 if 2 > 7.81 Conclusion We cannot reject H0. There is little evidence to support rejecting the assumption the population is normally distributed with = 71 and =
34
End of Chapter 12
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.