Presentation is loading. Please wait.

Presentation is loading. Please wait.

Exploring Tessellations

Similar presentations


Presentation on theme: "Exploring Tessellations"— Presentation transcript:

1

2 Exploring Tessellations
This Exploration of Tessellations will guide you through the following: Definition of Tessellation Regular Tessellations Symmetry in Tessellations Tessellations Around Us Semi-Regular Tessellations View artistic tessellations by M.C. Escher Create your own Tessellation

3 What is a Tessellation? A Tessellation is a collection of shapes that fit together to cover a surface without overlapping or leaving gaps.

4 Tessellations in the World Around Us:
Brick Walls Floor Tiles Checkerboards Honeycombs Textile Patterns Art Can you think of some more?

5 Are you ready to learn more about Tessellations?
CLICK on each topic to learn more… Regular Tessellations Semi-Regular Tessellations Symmetry in Tessellations Once you’ve explored each of the topics above, CLICK HERE to move on.

6 Regular Tessellations
Regular Tessellations consist of only one type of regular polygon. Do you remember what a regular polygon is? A regular polygon is a shape in which all of the sides and angles are equal. Some examples are shown here: Triangle Square Pentagon Hexagon Octagon

7 Regular Tessellations
Which regular polygons will fit together without overlapping or leaving gaps to create a Regular Tessellation? Maybe you can guess which ones will tessellate just by looking at them. But, if you need some help, CLICK on each of the Regular Polygons below to determine which ones will tessellate and which ones won’t: Triangle Square Pentagon Hexagon Octagon Once you’ve discovered whether each of the regular polygons tessellate or not, CLICK HERE to move on.

8 Regular Tessellations
Does a Triangle Tessellate? The shapes fit together without overlapping or leaving gaps, so the answer is YES.

9 Regular Tessellations
Does a Square Tessellate? The shapes fit together without overlapping or leaving gaps, so the answer is YES.

10 Regular Tessellations
Does a Pentagon Tessellate? Gap The shapes DO NOT fit together because there is a gap. So the answer is NO.

11 Regular Tessellations
Does a Hexagon Tessellate? The shapes fit together without overlapping or leaving gaps, so the answer is YES. Hexagon Tessellation in Nature

12 Regular Tessellations
Does an Octagon Tessellate? Gaps The shapes DO NOT fit together because there are gaps. So the answer is NO.

13 Regular Tessellations
As it turns out, the only regular polygons that tessellate are: TRIANGLES SQUARES HEXAGONS Summary of Regular Tessellations: Regular Tessellations consist of only one type of regular polygon. The only three regular polygons that will tessellate are the triangle, square, and hexagon.

14 Hexagon, Square & Triangle
Semi-Regular Tessellations Semi-Regular Tessellations consist of more than one type of regular polygon. (Remember that a regular polygon is a shape in which all of the sides and angles are equal.) How will two or more regular polygons fit together without overlapping or leaving gaps to create a Semi-Regular Tessellation? CLICK on each of the combinations below to see examples of these semi-regular tessellations. Hexagon & Triangle Square & Triangle Hexagon, Square & Triangle Octagon & Square Once you’ve explored each of the semi-regular tessellations, CLICK HERE to move on.

15 Semi-Regular Tessellations
Hexagon & Triangle Can you think of other ways to arrange these hexagons and triangles?

16 Semi-Regular Tessellations
Octagon & Square Look familiar? Many floor tiles have these tessellating patterns.

17 Semi-Regular Tessellations
Square & Triangle

18 Semi-Regular Tessellations
Hexagon, Square, & Triangle

19 Semi-Regular Tessellations
Summary of Semi-Regular Tessellations: Semi-Regular Tessellations consist of more than one type of regular polygon. You can arrange any combination of regular polygons to create a semi-regular tessellation, just as long as there are no overlaps and no gaps. What other semi-regular tessellations can you think of?

20 Symmetry in Tessellations
The four types of Symmetry in Tessellations are: Rotation Translation Reflection Glide Reflection CLICK on the four types of symmetry above to learn more. Once you’ve explored each of them, CLICK HERE to move on.

21 CLICK HERE to view some examples of rotational symmetry.
Symmetry in Tessellations Rotation To rotate an object means to turn it around. Every rotation has a center and an angle. A tessellation possesses rotational symmetry if it can be rotated through some angle and remain unchanged. Examples of objects with rotational symmetry include automobile wheels, flowers, and kaleidoscope patterns. CLICK HERE to view some examples of rotational symmetry. Back to Symmetry in Tessellations

22 Rotational Symmetry

23 Rotational Symmetry

24 Rotational Symmetry Back to Rotations

25 CLICK HERE to view some examples of translational symmetry.
Symmetry in Tessellations Translation To translate an object means to move it without rotating or reflecting it. Every translation has a direction and a distance. A tessellation possesses translational symmetry if it can be translated (moved) by some distance and remain unchanged. A tessellation or pattern with translational symmetry is repeating, like a wallpaper or fabric pattern. CLICK HERE to view some examples of translational symmetry. Back to Symmetry in Tessellations

26 Translational Symmetry
Back to Translations

27 CLICK HERE to view some examples of reflection symmetry.
Symmetry in Tessellations Reflection To reflect an object means to produce its mirror image. Every reflection has a mirror line. A tessellation possesses reflection symmetry if it can be mirrored about a line and remain unchanged. A reflection of an “R” is a backwards “R”. CLICK HERE to view some examples of reflection symmetry. Back to Symmetry in Tessellations

28 Reflection Symmetry

29 Reflection Symmetry Back to Reflections

30 CLICK HERE to view some examples of glide reflection symmetry.
Symmetry in Tessellations Glide Reflection A glide reflection combines a reflection with a translation along the direction of the mirror line. Glide reflections are the only type of symmetry that involve more than one step. A tessellation possesses glide reflection symmetry if it can be translated by some distance and mirrored about a line and remain unchanged. CLICK HERE to view some examples of glide reflection symmetry. Back to Symmetry in Tessellations

31 Glide Reflection Symmetry

32 Glide Reflection Symmetry
Back to Glide Reflections

33 Symmetry in Tessellations
Summary of Symmetry in Tessellations: The four types of Symmetry in Tessellations are: Rotation Translation Reflection Glide Reflection Each of these types of symmetry can be found in various tessellations in the world around us, including the artistic tessellations by M.C. Escher.

34 Exploring Tessellations
We have explored tessellations by learning the definition of Tessellations, and discovering them in the world around us.

35 Exploring Tessellations
We have also learned about Regular Tessellations, Semi-Regular Tessellations, and the four types of Symmetry in Tessellations.

36 Create Your Own Tessellation!
Now that you’ve learned all about Tessellations, it’s time to create your own.

37 Exploring Tessellations
Before you start creating your own Tessellation, let’s take one final look at some of the artistic tessellations by M.C. Escher. The following pieces of artwork should help give you Inspiration for your final project. Good luck!

38

39

40

41

42

43

44

45

46

47 How to make a tessellation
Start with shape that tessellates Cut a piece off and tape to top or side Repeat

48 How to make a tessellation
Trace your shape over and over. You can color it in to make a picture This is a TRANSLATION tessellation in that you are repeating the same shape next to each other.

49 How to make a tessellation
You can make another tessellation by FLIPPING your cutout prior to pasting it back on your original.

50 How to make a tessellation

51 How to make a tessellation
A third way is to paste your cutoff on another edge (rotate it prior to pasting). Hey we did a translate then paste (slide), Reflect then paste (flip) and Rotate then paste (Turn)

52 How to make a tessellation

53 How to make a tessellation
These options started with a square. You have other shapes you could use. Have fun!!

54 How to make a tessellation

55 Resources “Totally Tessellated” from ThinkQuest.org Tessellations.com
MathAcademy.com CoolMath.com MathForum.org ScienceU.com MathArtFun.com MCEscher.com Click to end


Download ppt "Exploring Tessellations"

Similar presentations


Ads by Google