Presentation is loading. Please wait.

Presentation is loading. Please wait.

A set is a collection of objects.

Similar presentations


Presentation on theme: "A set is a collection of objects."— Presentation transcript:

1 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects.

2 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter}

3 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} element Each object is called an element of the set

4 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} element Each object is called an element of the set

5 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} element Each object is called an element of the set

6 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} element Each object is called an element of the set

7 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} There is a standard notation for indicating the number of elements in a set.

8 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} 1 2 3 4 There is a standard notation for indicating the number of elements in a set. The set S above has 4 elements

9 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} 1 2 3 4 There is a standard notation for indicating the number of elements in a set. The set S above has 4 elements so we write

10 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. For example: the set of seasons S = {Spring, Summer, Fall, Winter} 1 2 3 4 There is a standard notation for indicating the number of elements in a set. The set S above has 4 elements so we write n(S) = 4

11 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets:

12 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5}

13 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000}

14 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …}

15 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …} W = {x : x is a 2 legged animal}

16 A set is a collection of objects.
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …} W = {x : x is a 2 legged animal} W is written in what we call ‘set builder’ notation Read as: “The set of all x, such that x is a 2 legged animal.”

17 W = {x : x is a 2 legged animal}
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …} W = {x : x is a 2 legged animal} W is written in what we call ‘set builder’ notation Read as: “The set of all x, such that x is a 2 legged animal.”

18 W = {x : x is a 2 legged animal}
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …} W = {x : x is a 2 legged animal} W is written in what we call ‘set builder’ notation Read as: “The set of all x, such that x is a 2 legged animal.”

19 W = {x : x is a 2 legged animal}
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …} W = {x : x is a 2 legged animal} W is written in what we call ‘set builder’ notation Read as: “The set of all x, such that x is a 2 legged animal.”

20 W = {x : x is a 2 legged animal}
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …} W = {x : x is a 2 legged animal} W is written in what we call ‘set builder’ notation Read as: “The set of all x, such that x is a 2 legged animal.”

21 W = {x : x is a 2 legged animal}
MATH 110 Sec 2-1 Lecture on Intro to Sets A set is a collection of objects. More examples of sets: T = {1, 2, 3, 4, 5} U = {1, 2, 3, … , 1000} V = {1, 2, 3, 4, …} W = {x : x is a 2 legged animal} W is written in what we call ‘set builder’ notation Read as: “The set of all x, such that x is a 2 legged animal.”

22 MATH 110 Sec 2-1 Lecture on Intro to Sets
A set is well defined if it is possible to definitively determine whether or not any particular object is a member of the set.

23 MATH 110 Sec 2-1 Lecture on Intro to Sets
A set is well defined if it is possible to definitively determine whether or not any particular object is a member of the set. A = {1, 2, 3, 4, 5} WELL DEFINED B= {x : x is tall} NOT WELL DEFINED

24 MATH 110 Sec 2-1 Lecture on Intro to Sets
A set is well defined if it is possible to definitively determine whether or not any particular object is a member of the set. A = {1, 2, 3, 4, 5} WELL DEFINED B= {x : x is tall} NOT WELL DEFINED

25 MATH 110 Sec 2-1 Lecture on Intro to Sets
A set is well defined if it is possible to definitively determine whether or not any particular object is a member of the set. A = {1, 2, 3, 4, 5} WELL DEFINED B= {x : x is tall} NOT WELL DEFINED

26 MATH 110 Sec 2-1 Lecture on Intro to Sets
A set is well defined if it is possible to definitively determine whether or not any particular object is a member of the set. A = {1, 2, 3, 4, 5} WELL DEFINED B= {x : x is tall} NOT WELL DEFINED

27 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS Є is the symbol for “is an element of”

28 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS Є is the symbol for “is an element of” If A = {1, 2, 3, 4, 5}, then 2 Є A.

29 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS Є is the symbol for “is an element of” If A = {1, 2, 3, 4, 5}, then 2 Є A. In general the symbol for “not” something is the symbol for that thing with a diagonal line through it.

30 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS Є is the symbol for “is an element of” If A = {1, 2, 3, 4, 5}, then 2 Є A. In general the symbol for “not” something is the symbol for that thing with a diagonal line through it. For example, 7 ∉ A.

31 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set containing no elements is called the empty set (or sometimes, the null set).

32 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set containing no elements is called the empty set (or sometimes, the null set). Let M = {x: x is a female U.S. President before 2010}

33 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set containing no elements is called the empty set (or sometimes, the null set). Let M = {x: x is a female U.S. President before 2010} Because this set is EMPTY, we can write

34 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set containing no elements is called the empty set (or sometimes, the null set). Let M = {x: x is a female U.S. President before 2010} Because this set is EMPTY, we can write Ø or { }

35 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U).

36 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). If you are choosing a 3-person committee from a 50 member club, the Universal set consists of the names of all 50 members.

37 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). If you are choosing a 3-person committee from a 50 member club, the Universal set consists of the names of all 50 members. If you are looking at course grades in a class where the only grades possible are A, B, C, D, F, W, then U = { A, B, C, D, F, W}.

38 If you roll a die twice & count how many fives you get U = {0, 1, 2}.
MATH 110 Sec 2-1 Lecture on Intro to Sets SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). If you are choosing a 3-person committee from a 50 member club, the Universal set consists of the names of all 50 members. If you are looking at course grades in a class where the only grades possible are A, B, C, D, F, W, then U = { A, B, C, D, F, W}. If you roll a die twice & count how many fives you get U = {0, 1, 2}.

39 If you roll a die twice & count how many fives you get U = {0, 1, 2}.
MATH 110 Sec 2-1 Lecture on Intro to Sets SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). If you are choosing a 3-person committee from a 50 member club, the Universal set consists of the names of all 50 members. If you are looking at course grades in a class where the only grades possible are A, B, C, D, F, W, then U = { A, B, C, D, F, W}. If you roll a die twice & count how many fives you get U = {0, 1, 2}.

40 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). THE UNIVERSAL SET IS CONTEXTUAL…IT DEPENDS COMPLETELY ON THE CONTEXT OF THE PROBLEM.

41 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). THE UNIVERSAL SET IS CONTEXTUAL…IT DEPENDS COMPLETELY ON THE CONTEXT OF THE PROBLEM. For example, if we are showing the results of a coin flip, U = { HEAD , TAIL }

42 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). THE UNIVERSAL SET IS CONTEXTUAL…IT DEPENDS COMPLETELY ON THE CONTEXT OF THE PROBLEM. For example, if we are showing the results of a coin flip, U = { HEAD , TAIL }

43 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). THE UNIVERSAL SET IS CONTEXTUAL…IT DEPENDS COMPLETELY ON THE CONTEXT OF THE PROBLEM. For example, if we are showing the results of a coin flip, U = { HEAD , TAIL } If we roll a single ordinary die, then U =

44 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The set of all elements under consideration for a particular problem is called the universal set (U). THE UNIVERSAL SET IS CONTEXTUAL…IT DEPENDS COMPLETELY ON THE CONTEXT OF THE PROBLEM. For example, if we are showing the results of a coin flip, U = { HEAD , TAIL } If we roll a single ordinary die, then U = { 1 , 2 , 3 , 4 , 5 , 6 }

45 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set.

46 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read

47 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’.

48 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’.

49 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’. If A = { 1 , 2 , 4 , 6 , 8 , 10 }, then n(A) = 6.

50 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’. A set is finite if its cardinal number is a whole number and infinite if its cardinal number is not a whole number.

51 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’. A set is finite if its cardinal number is a whole number and infinite if its cardinal number is not a whole number. A = { 1 , 2 , 4 }

52 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’. A set is finite if its cardinal number is a whole number and infinite if its cardinal number is not a whole number. A = { 1 , 2 , 4 } FINITE

53 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’. A set is finite if its cardinal number is a whole number and infinite if its cardinal number is not a whole number. A = { 1 , 2 , 4 } FINITE A = { 2 , 4 , 6 , 8 , …}

54 MATH 110 Sec 2-1 Lecture on Intro to Sets
SYMBOLS The number of elements in set A is called the cardinal number of the set. n(A) is read ‘the cardinal number of A’ or more informally, ‘the number of elements of A’. A set is finite if its cardinal number is a whole number and infinite if its cardinal number is not a whole number. A = { 1 , 2 , 4 } FINITE A = { 2 , 4 , 6 , 8 , …} INFINITE


Download ppt "A set is a collection of objects."

Similar presentations


Ads by Google