Download presentation
Presentation is loading. Please wait.
1
CONFIDENTIAL PRIVATE INFORMATION
Nonlinear Analysis / Nonlinear Dynamic Analysis of Module Lifting with Wind Load
2
CONFIDENTIAL PRIVATE INFORMATION
Outline Introduction of Modularization Design Lifting Point Applying Wind Load to Module Analysis & Results Hand Calculation Nonlinear Analysis Nonlinear Dynamic Analysis Remaining problems Conclusion Q&A
3
Introduction of Modularization Design
4
Introduction of Modularization Design
Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting at Daylight Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting Start
5
Introduction of Modularization Design
Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting in Air Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting in Air
6
Introduction of Modularization Design
Benefits of modularization design: Significant decrease in construction time Ease of construction Easy access in tight spaces Better quality
7
Lifting Point
8
Weak Spring Restrain to Prevent Structural Instability
Lifting Point Lifting Point Cable Element Weak Spring Restrain to Prevent Structural Instability Modeling Method
9
Lifting Point Center of Gravity (C.G.) Center of Gravity
***************************************************** { 3362} > LIST DYNAMIC MASS SUMMARY 1 **************************** *RESULTS OF LATEST ANALYSES* PROBLEM TITLE - NONE GIVEN ACTIVE UNITS FEET KIP CYC DEGF SEC / / / / / / / / GLOBAL CENTER OF MASS Mass Moment of Inertia about AXIS COORDINATE TOTAL MASS TOTAL WEIGHT X Axis Y Axis Z Axis X E Y E Z E+00 Center of Gravity
10
Lifting Point Top : X: -0.724” Y: 0.503” Bottom : X: 2.632” Y: 1.102”
Lifting point aligns with Center of Gravity: Top : X: ” Y: 0.503” Bottom : X: 2.632” Y: 1.102”
11
Lifting Point Top : X: -0.197” Y: 0.144” Bottom : X: -0.829”
Lift at X:71.07’; Y:95.68’ Top : X: ” Y: 0.144” Bottom : X: ” Y: ”
12
Lifting Point Top : X: 30.17” Y: -25.92” Bottom : X: 40.93” Y: 27.54”
Offset Lifting point: Lift at X:71.26’; Y:95.85’ Top : X: 30.17” Y: ” Bottom : X: 40.93” Y: 27.54”
13
Lifting Point Top : X: -48.38” Y: 37.15” Bottom : X: -35.02”
Offset Lifting point: Lift at X:71.26’; Y:95.44’ Top : X: ” Y: 37.15” Bottom : X: ” Y: ”
14
Lifting Point Top : X: -44.76” Y: 35.05” Bottom : X: 34.76” Y: 37.63”
Offset Lifting point: Lift at X:70.85’; Y:95.85’ Top : X: ” Y: 35.05” Bottom : X: 34.76” Y: 37.63”
15
Lifting Point Top : X: -48.38” Y: 37.15” Bottom : X: -35.02”
Offset Lifting point: Lift at X:70.85’; Y:95.50’ Top : X: ” Y: 37.15” Bottom : X: ” Y: ”
16
Lifting Point Deformation Summary Table
Lifting Point (ft) Distance from Lifting Point (in) Deformation (in) X Y Top Bottom Center of Gravity 71.11 95.67 8/16 - 2/16 0.724 0.503 2.632 1.102 Lifting Point 71.07 95.68 -0.197 0.144 -0.829 -0.137 Offset Point 1 71.26 95.85 2 4/16 2 1/16 30.17 -25.92 40.93 27.54 Offset Point 2 95.44 -2 14/16 -48.38 37.15 -35.02 44.48 Offset Point 3 70.85 -2 10/16 -44.76 35.05 34.76 37.63 Offset Point 4 95.5 -2 3/16 -44.48
17
Applying Wind Load to Module
18
Applying Wind Load to Module
Wind speed definition: Light & variable. = 0-5 mph. Breezy = mph. Windy = 20-30mph. Very Windy = mph. Strong = mph. Gale Force = mph. Hurricane = 74+ mph. Design Wind Speed Wind Speed Net Design Wind Pressure 40 mph 4 psf 30 mph 2 psf
19
Applying Wind Load to Module
Calculate Exposed Steel Area: { 3349} > PRINT MEMBER LENGTH MEMBERS EXISTING { 3350} > PRINT MEMBER INCIDENCES MEMBERS EXISTING { 3351} > PRINT MEMBER PROPERTIES MEMBERS EXISTING
20
Applying Wind Load to Module
Calculate Joint Load: Member Start End Length Depth Wind Pressure Distribution Load Joint Load (ft) (psf) (lbf/ft) (lbf) BM100123 F1021 B100170 4.833 2.367 4.000 9.468 22.879 BM100124 J 2.417 11.442 BM100125 B100171 2.416 11.437 BM100126 F1020 4.834 22.884 BM100127 F1023 B100123 4.800 22.723 BM100128 J 2.450 11.598 BM100129 B100120 BM100130 F1022 BM100131 F2004 B100106 1.150 4.600 11.040 BM100132 B100110 4.866 11.192 BM100133 F2003 11.118 BM100134 F2002 B100156 1.017 4.068 9.830 BM100135 B100162 BM100136 F2001 9.832 BM100146 B100105 B100109 9.763 BM100147 B100113 9.897 BM100148 B100102 BM100149 B100147 6.000 12.204 BM100150 B100148
21
Applying Wind Load to Module
Time History Wind Pressure for Dynamic Analysis
22
Applying Wind Load to Module
Time History Wind Pressure for Dynamic Analysis
23
Analysis & Results
24
Analysis & Results Hand Calculation
Wind Load Dead Load C. G. 82 ft q T Wind Load Dead Load C. G.
25
Analysis & Results Hand Calculation (cont’d)
X-direction (4psf) Y-direction (4psf) X-direction (2psf) Y-direction (2psf) Wind Load (kips) 15.32 20.62 7.66 10.31 Gravity Load (kips) 2594 q (degree) 0.339 0.456 0.169 0.228 Location Top Bottom Length (ft) 55.34 133.35 58.51 134.70 Displacement (in) 3.92 9.45 5.58 12.85 1.96 4.73 2.79 6.42
26
Analysis & Results Nonlinear Analysis
X- Direction Wind Load 4 psf Top : X: 16.12” Y: -8.92” Bottom : X: 22.45” Y: -9.28”
27
Analysis & Results Nonlinear Analysis (cont’d)
Y- Direction Wind Load 4 psf Top : X: ” Y: 24.65” Bottom : X:-27.43” Y: 32.89”
28
Analysis & Results Nonlinear Analysis (cont’d)
X- Direction Wind Load 2 psf Top : X: 7.45” Y: -4.03” Bottom : X: 10.54” Y: -4.12”
29
Analysis & Results Nonlinear Analysis (cont’d)
Y- Direction Wind Load 2 psf Top : X: ” Y: 12.18” Bottom : X: ” Y: 16.71”
30
Analysis & Results Nonlinear Analysis (cont’d)
CONFIDENTIAL PRIVATE INFORMATION Analysis & Results Nonlinear Analysis (cont’d) Nonlinear Analysis Summary Table Deformation (in) Top Bottom X Y X-Direction 4 psf 16.12 -8.92 22.45 -9.28 2 psf 7.45 -4.03 10.54 -4.12 Y-Direction -27.64 24.65 -27.43 32.89 -13.64 12.18 -13.46 16.71
31
Analysis & Results Nonlinear Dynamic Analysis
Time History Wind Pressure for Dynamic Analysis
32
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
Top Joint Bottom Joint
33
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
X-direction Wind (4 psf) Top Joint Displacement
34
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
X-direction Wind (4 psf) Bottom Joint Displacement
35
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
Y-direction Wind (4 psf) Top Joint Displacement
36
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
Y-direction Wind (4 psf) Bottom Joint Displacement
37
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
Time History Wind Pressure for Dynamic Analysis
38
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
X-direction Wind (4 psf) Top Joint Displacement
39
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
X-direction Wind (4 psf) Bottom Joint Displacement
40
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
Y-direction Wind (4 psf) Top Joint Displacement
41
Analysis & Results Nonlinear Dynamic Analysis (cont’d)
Y-direction Wind (4 psf) Bottom Joint Displacement
42
Remaining Problems
43
Remaining Problems Instability problem during analysis Difficulty to obtain wind time history data Computer limitation Wind load uncertainty
44
Conclusion
45
Conclusion Structure is sensitive to lifting point
Hand calculation is not able to account for rotational deformation Nonlinear analysis provides conservative results Nonlinear dynamic analysis provides more realistic results 30 MPH is a better criteria for this particular lifting procedure
46
Q&A
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.