Download presentation
Presentation is loading. Please wait.
2
METODE PERAMALAN Pertemuan 16
Matakuliah : J Analisis Kuantitatif Bisnis Tahun : 2009/2010 METODE PERAMALAN Pertemuan 16
3
Framework Metode Peramalan Regresi
Aplikasi Model (Model Regresi Sederhana dan Regresi Berganda) Koefisien Determinasi Interpretasi Hasil dan Analisis Model Bina Nusantara University
4
d). Linear Trend Line Rumus Umum: Y = a + bx dimana:
a = intersep b = kemiringan x = periode waktu Y = ramalan untuk periode Bina Nusantara University
5
Linear Trend Projection Model
b > 0 a Y b < 0 a X Bina Nusantara University
6
Contoh : Linear Trend Projection
Period (x) 1 8 2 11 3 13 4 15 5 19 Sales (y) xy 60 95 22 39 xy=224 x2 9 16 25 x2=55 x=3 y=13.2 Bina Nusantara University
7
Lanjutan Period (x) MA ES 1 2 3 4 5 8 11 13 15 19 Err. 6 10.67 13.00
15.67 12 13.5 16.25 4.33 6.00 Sales (y) 3.0 5.5 TP 21.0 18.4 15.8 -0.8 0.6 TP = Trend Projection: Y = x Small errors! Bina Nusantara University
8
Kesalahan Peramalan Kesalahan Peramalan = Ukuran yang digunakan:
Mean Absolute Deviation (MAD) Mean Squared Error (MSE) Pilih metode peramalan yang menghasilkan MAD atau MSE terkecil Bina Nusantara University
9
Model Regresi Linear Shows linear relationship between dependent & explanatory variables Example: Sales & advertising (not time) Y-intercept Slope ^ Y = a b X i i Dependent (response) variable Independent (explanatory) variable Bina Nusantara University
10
Linear Regression Model
Y a Y b X i = Error i Observed value Y a b X = Regression line Error ^ i i X Bina Nusantara University
11
Interpretasi Koefisien Regresi
Slope (b): Y changes by b units for each 1 unit increase in X. If b = +2, then sales (Y) is forecast to increase by 2 for each 1 unit increase in advertising (X). Y-intercept (a): Average value of Y when X = 0. If a = 4, then average sales (Y) is expected to be 4 when advertising (X) is 0. Bina Nusantara University
12
Koefisien Determinasi
Answers: ‘How strong is the linear relationship between the variables?’ Coefficient of correlation - r Measures degree of association; ranges from -1 to +1 Coefficient of determination - r2 Amount of variation explained by regression equation. Used to evaluate quality of linear relationship. Bina Nusantara University
13
Koefisien Korelasi Bina Nusantara University
14
Selecting Forecasting Model Example
You’re a marketing analyst for Hasbro Toys. You’ve forecast sales with a linear regression model & exponential smoothing. Which model do you use? Linear Regression Exponential Actual Model Smoothing Year Sales Forecast Forecast (.9) This slide begins an example of choosing a model. Bina Nusantara University
15
Linear Regression 1.10 Year Y i F’cast 1 0.6 0.4 0.16 2 1.3 -0.3 0.09
2.0 0.0 0.00 4 2.7 -0.7 0.49 0.7 5 3.4 0.36 Total Error Error2 |Error| 1.10 MSE = Σ Error2 / n = / 5 = MAD = Σ |Error| / n = / 5 = MAPE = Σ[|Error|/Actual]/n = 1.2/5 = = 24% Bina Nusantara University
16
Model Eksponential Smoothing
Year Y i F’cast 1 1.00 0.0 0.00 2 3 1.0 4 1.90 0.1 0.01 5 2.01 4.04 Total 0.3 5.05 3.11 Error Error2 |Error| 1.99 MSE = Σ Error2 / n = / 5 = MAD = Σ |Error| / n = / 5 = MAPE = Σ[|Error|/Actual]/n = /5 = = 21% Bina Nusantara University
17
Mana Yang Terbaik??? Linear Regression :
MSE = Σ Error2 / n = / 5 = MAD = Σ |Error| / n = / 5 = MAPE = Σ[|Error|/Actual]/n = 1.2/5 = = 24% Exponential Smoothing: MSE = Σ Error2 / n = / 5 = MAD = Σ |Error| / n = / 5 = MAPE = Σ[|Error|/Actual]/n = /5 = = 21% This slide presents the result of the calculations of MSE and MAD for the Linear and Exponential Smoothing models. Students should be asked to choose the “better” model. Students should also be asked to consider the differences between the values calculated for the error measures for a given model, and between the two models. Do these differences tell us more than simply that one model is preferable to the other? (For example, is the exponential smoothing model 22 times better than the linear model?) Bina Nusantara University
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.