Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay

Similar presentations


Presentation on theme: "Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay"— Presentation transcript:

1 Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay
Photochemical generation of H2NCNX, H2NNCX, H2NC(NX) (X = O, S) in low-temperature matrices Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay Eötvös Loránd University, Laboratory of Molecular Spectroscopy Budapest, Hungary 2017

2 Outline of the presentation
Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

3 Outline of the presentation
Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

4 Introduction Relative abundance of covalent pseudohalogen isomers
Properties of interstellar or circumstellar clouds Sgr B2: HNCO, HOCN HNCS, HSCN TCM-1: HCNO 67P/Churyumov-Gerasimenko: CH3CNO

5 Introduction H2N-R -CNX -NCX -XCN -XNC -C(NX) X = O X = S
500 °C pyrolysis Ar, 10K [1] H2NNCO mass-spectrometry [2] H2NCNS [1] J. H. Teles, G. Maier, Chem. Ber. 122, 745, 1989. [2] R. Flammang et al., J. Phys. Chem. 100, 17452, 1996.

6 Goals of our studies To study the [NH2, C, N, X] (X = O, S) isomers
using quantum-chemical methods to compute: - equilibrium structures, relative energies - harmonic and anharmonic wavenumbers, IR intensities and UV excitation energies using matrix-isolation technique to: - generate and spectroscopically identify new [NH2, C, N, X] isomers from 3,4-diaminofurazan, and 3,4-diaminothiadiazole

7 Matrix isolation setup
Vacuum system Rotational pump Turbom. pump Cryostat Cryostat Probe Cooling system Sample preparing system

8 Outline of the presentation
Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

9 [NH2, C, N, X] (X = O, S) isomers
fc CCSD(T)/cc-pVTZ equilibrium structures and ZPVE corrected relative energies

10 IR wavenumbers and intensities of [NH2, C, N, O] isomers
fc CCSD(T)/cc-pVTZ harmonic wavenumbers corrected by B3LYP/cc-pVTZ anharmonic contributions (in cm-1) fc CCSD(T)/cc-pVTZ harmonic intensities (in km mol-1) H2NNCO H2NCNO H2NOCN H2NONC H2NC(NO) 3348 (6.0) 3417 (35) 3353 (5.5) 3360 (4.8) 3564 (58) 3316 (2.0) 3365 (20) 3275 (0.9) 3286 (0.6) 3458 (54) 2235 (853) 2328 (228) 2243 (85) 2063 (43) 1794 (270) 1618 (15) 1610 (25) 1561 (32) 1595 (30) 1579 (25) 1385 (15) 1378 (252) 1292 (5.8) 1311 (4.9) 1394 (34) 1304 (2.9) 1183 (52) 1208 (83) 1199 (77) 1034 (8.3) 1067 (70) 858 (13) 1072 (51) 862 (14) 962 (10) 847 (8.3) 609 (202) 807 (4.7) 817 (13) 614 (56) 650 (35) 471 (17) 607 (2.1) 529 (23) 468 (189) 588 (22) 497 (1.9) 446 (20) 441 (29)

11 IR wavenumbers and intensities of [NH2, C, N, S] isomers
fc CCSD(T)/cc-pVTZ harmonic wavenumbers corrected by B3LYP/cc-pVTZ anharmonic contributions (in cm-1) fc CCSD(T)/cc-pVTZ harmonic intensities (in km mol-1) H2NNCS H2NCNS H2NSCN H2NSNC H2NC(NS) H2NN(CS) 3399 (15) 3460 (55) 3456 (29) 3456 (33) 3559 (51) 3379 (18) 3313 (1.8) 3384 (51) 3370 (19) 3365 (12) 3445 (50) 3296 (7.1) 2000 (622) 2250 (50) 2170 (<1) 2033 (176) 1792 (159) 1690 (14) 1598 (21) 1598 (20) 1580 (9.4) 1590 (17) 1587 (34) 1617 (24) 1320 (36) 1153 (<1) 1099 (<1) 1098 (<1) 1218 (70) 1310 (8.1) 1139 (59) 1121 (187) 842 (52) 875 (24) 1048 (14) 1043 (46) 897 (131) 322 (286) 657 (15) 608 (27) 677 (19) 843 (88) 701 (24) 573 (11) 553 (75) 563 (204) 548 (85) 615 (13) 524 (61) 455 (0.34) 504 (34) 478 (18) 416 (2.2) 415 (1.5) 410 (14) 444 (174)

12 [NH2, C, N, X] (X = O, S) – NH2CN complexes
B3LYP/cc-pVTZ equilibrium structures H2NCNO : H2NCN H2NNCO : H2NCN H2NC(NO) : H2NCN H2NCNS : H2NCN H2NNCS : H2NCN H2NC(NS) : H2NCN

13 Outline of the presentation
Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

14 MI-IR spectra of 3,4-diaminofurazan
in argon in krypton B3LYP/aug-cc-pVTZ harmonic wavenumbers and IR intensities

15 MI-UV spectrum of 3,4-diaminofurazan in argon
deposited 20 min photolysis at 254 nm + 15 min photolysis at BBUV

16 Photolysis of 3,4-diaminofurazan in argon
a) 3 hours 213 nm photolysis – deposited b) 3 hours 239 nm photolysis – deposited c) and d) H2NCNO:H2NCN and H2NNCO:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities) e) H2NC(NO) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ))

17 Photolysis of 3,4-diaminofurazan in krypton
a) 3 hours 213 nm photolysis – deposited b) 3 hours 239 nm photolysis – deposited c) and d) H2NCNO:H2NCN and H2NNCO:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities) e) H2NC(NO) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ))

18 Photolysis of 3,4-diaminofurazan in argon
H2NCNO:H2NCN H2NNCO:H2NCN H2NC(NO)

19 Outline of the presentation
Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

20 MI-IR spectra of 3,4-diaminothiadiazole
in argon in krypton B3LYP/aug-cc-pVTZ harmonic wavenumbers and IR intensities

21 MI-UV spectrum of 3,4-diaminothiadiazole in argon
deposited 15 min photolysis at 254 nm + 15 min photolysis at BBUV

22 Photolysis of 3,4-diaminothiadiazole in argon
a) 3 hours 221 nm photolysis – deposited b) 3 hours 280 nm photolysis – deposited c) H2NC(NS) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ)) d) and e) H2NNCS:H2NCN and H2NCNS:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities)

23 Photolysis of 3,4-diaminothiadiazole in krypton
a) 3 hours 221 nm photolysis – deposited b) 3 hours 280 nm photolysis – deposited c) H2NC(NS) (fc CCSD(T)/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic fc CCSD(T)/cc-pVTZ)) d) and e ) H2NNCS:H2NCN and H2NCNS:H2NCN (B3LYP/cc-pVTZ anharmonic wavenumbers and intensities)

24 MI-IR spectra of 3,5-diamino-1,2,4-thiadiazole
in argon in krypton B3LYP/aug-cc-pVTZ harmonic wavenumbers and IR intensities

25 MI-UV spectrum of 3,5-diamino-1,2,4-thiadiazole in argon
deposited 30 min photolysis at 254 nm + 15 min photolysis at BBUV

26 Photolysis of 3,5-diamino-1,2,4-thiadiazole
a) 3 hours 240 nm photolysis – deposited in argon b) 3 hours 250 nm photolysis – deposited in krypton c) HNNCHS:H2NCN (MP2/cc-pVTZ harmonic wavenumbers + B3LYP/cc-pVTZ anharmonic contributions (IR intensities: harmonic MP2/cc-pVTZ))

27 Photolysis of 3,5-diamino-1,2,4-thiadiazole in argon
H2NCNS:H2NCN c) H2NC(NS) H2NNCS:H2NCN d) HNNCHS:H2NCN

28 Outline of the presentation
Introduction, goals of our studies Computational results Experimental results [NH2, C, N, O] system [NH2, C, N, S] system Summary

29 Summary [1] H2NCNO H2NNCO H2NC(NO) H2NCNS H2NNCS H2NC(NS) HNNHCS H2N-R
-CNX -NCX -XCN -XNC -C(NX) X = O ! X = S [1] T. Voros, G. G. Lajgut, G. Magyarfalvi, G. Tarczay, J. Chem. Phys. 146, , 2017.


Download ppt "Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, György Tarczay"

Similar presentations


Ads by Google