Presentation is loading. Please wait.

Presentation is loading. Please wait.

Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy.

Similar presentations


Presentation on theme: "Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy."— Presentation transcript:

1 Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy via dipole bound states Dao-Ling Huang, Guo-Zhu Zhu, Lai-Sheng Wang, Department of Chemistry, Brown University, Providence, RI 71th International Symposium on Molecular Spectroscopy University of Illinois at Champaign-Urbana Jun 20-24, 2016

2 Radiation damage of DNA
Primary impact of high energy quanta Radiation damage, i.e., strand break UV, X-ray, etc Secondary particles, i.e., ions, radicals, low-energy electrons Interactions of low-energy electrons with DNA Top-down Bottom up Single DNA constituents: isolated base, the sugar and the phosphate units B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, L. Sanche, Science 2000, 287, 1658 B. D. Michael, P. O'Neill, Science 2000, 287, 1603 P. Swiderek,   Angew. Chem., Int. Ed. 2006, 45, 4056

3 Previous studies on thymine
Dissociative electron attachment Electron affinities calculations eV eV Low-energy (<2 eV) electrons – loss H L. T. M. Profeta, et al, Mol. Phys., 2003, 101, 3277–3284 S. Denifl, et al, J. Phys. Chem. A, 2004, 108, 6562–6569 S. Ptasinska, et al, J. Chem. Phys., 2005, 123, D. S. Jiao and H. Y. Wang, Mol. Phys., 2008, 106, 2653–2665 E. C. M. Chen, et al, Nucleosides, Nucleotides Nucleic Acids, 2008, 27, 506–524 H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Rev. Lett. 2004, 92, 168103 S. Ptasińska, et al, Phys. Rev. Lett. 2005, 95, 093201 P. Swiderek,   Angew. Chem., Int. Ed. 2006, 45, 4056 Anion photoelectron spectroscopy EA = ± eV B. F. Parsons, S. M. Sheehan, T. A. Yen, D. M. Neumark, N. Wehres and R. Weinkauf, Phys. Chem. Chem. Phys., 2007, 9, 3291–3297

4 Photodetachment and autodetachment photoelectron spectroscopy
eV eV 355 nm (3.496 eV)

5 Principle of photoelectron spectroscopy and autodetachment
Franck-Condon principle BE = hv - KE M Binding energy v=2 e- KE v=1 v=0 hv M- ADE Configuration coordinate

6 Principle of photoelectron spectroscopy and autodetachment
Franck-Condon principle Neutral molecule, m > 2.5 D dipole bound state BE = hv - KE e- M (M-) *DBS Binding energy v=2 v'=2 e- KE Autodetachment v=1 v'=1 phenoxide anion, radical μ = 4.0 D v=0 v'=0 Δν = -1 hv M- ADE Configuration coordinate J. Simons, J. Am. Chem. Soc. 1981, 103, 3971

7 Principle of photoelectron spectroscopy and autodetachment
Franck-Condon principle Neutral molecule, m > 2.5 D dipole bound state Non-Franck-Condon BE = hv - KE e- M (M-) *DBS Binding energy v=2 v'=2 Binding energy e- KE Autodetachment v=1 v'=1 v=0 v'=0 Δν = -1 hv M- ADE Autodetachment can resonantly enhance the intensity. Configuration coordinate J. Simons, J. Am. Chem. Soc. 1981, 103, 3971

8 Experimental set-up thymine+NaOH CH3OH/H2O
 L. S. Wang, J. Chem. Phys. 2015, 143,

9 Non-resonant photoelectron image and spectrum
Mode Symmetry Theo. (cm-1) v1 A″ 70 v2 93 v3 135 v4 262 v5 A′ 285 v6 388 v7 397 v8 450 v9 555 v10 608 v11 670 v12 720 v13 727 [N1-H] ● B3LYP/ G(d,p) Cs symmetry Peak BE (cm-1) Shift (cm-1) Assignment 000 26322(5) A 26604(5) 282 501 B 26715(5) 393 701 C 26884(25) 562 901 D 27044(22) 722 1201 E 27267(18) 945 701901 F 27422(16) 1100 902 G 27593(14) 1271 H 27784(12) 1462 701902 I 27873(12) 1551 J 27963(10) 1641 903 K 27983(10) 1661 L 28024(8) 1702 M 28135(5) 1813 EA = ± eV (by resonant PES)

10 Photodetachment spectrum
threshold BEDBS = 238 ± 5 cm-1

11 Resonant photoelectron spectra and images
threshold

12 Comparison between non-resonant and resonant spectra

13 Comparison between non-resonant and resonant spectra

14 Assignments of dipole-bound states
Resonant Energy level diagram

15 Assignments of dipole-bound states
Energy level diagram

16 Assignments of Franck-Condon inactive peaks
Mode Symmetry Theo. (cm-1) v1 A″ 70 v2 93 v3 135 v4 262 v5 A′ 285 v6 388 v7 397 v8 450 v9 555 v10 608 v11 670 v12 720 v13 727 [N1-H] radical B3LYP/ G(d,p) Cs symmetry Peak BE (cm-1) Shift (cm-1) Assignment 000 26322(5) A 26604(5) 282 501 B 26715(5) 393 701 C 26884(25) 562 901 D 27044(22) 722 1201 E 27267(18) 945 701901 a 26396(8) 74 101 b 26413(5) 91 201 c 26462(5) 140 301 d 26482(5) 160 101201 e 26526(5) 204 101301 f 26582(5) 260 401 g 26644(8) 321 101401 h 26678(5) 356 201401

17 Summary Accurately determined the electron affinity of N1[T-H]● to be ± eV and the binding energy of dipole-bound ground state to be 238 ± 5 cm-1; Highly non-Franck-Condon resonant-enhanced photoelectron spectra were obtained due to state-selective vibrational autodetachment via dipole-bound states; Obtained 11 fundamental vibrational frequencies in the low-frequencies regime.

18 Acknowledgement Prof. Lai-Sheng Wang Dr. Dao-Ling Huang
other group members

19

20 Assignments of dipole-bound states
Non-resonant Resonant Energy level diagram

21 Assignments of dipole-bound states

22 Assignments of dipole-bound states

23 Assignments of dipole-bound states

24 Assignments of dipole-bound states

25 Assignments of dipole-bound states

26 Assignments of dipole-bound states

27 Assignments of dipole-bound states

28 Assignments of dipole-bound states
Non-resonant Resonant Energy level diagram

29 Non-resonant photoelectron image and spectrum


Download ppt "Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy."

Similar presentations


Ads by Google