Download presentation
Presentation is loading. Please wait.
1
MAT 3749 Introduction to Analysis
Section 2.3 Part III The Mean Value Theorem
2
Important Result a b
3
Preview Extreme Value Theorem Fermat’s Theorem Rolle’s Theorem
The Mean Value Theorem
4
References Section 2.3
5
Maximum Value
6
Local Maximum
7
T or F An absolute max is a local max.
8
The Extreme Value Theorem
9
Fermat’s Theorem
10
Lemma (HW)
11
Fermat’s Theorem
12
Conceptual Diagrams
13
Fermat’s Theorem
14
Fermat’s Theorem
15
Fermat’s Theorem
16
Fermat’s Theorem
17
Proof
18
Proof
19
Proof
20
Proof
21
Rolle’s Theorem
22
Rolle’s Theorem
23
Rolle’s Theorem
24
Rolle’s Theorem
25
Rolle’s Theorem
26
Rolle’s Theorem
27
Rolle’s Theorem
28
Rolle’s Theorem
29
Rolle’s Theorem
30
Rolle’s Theorem
31
Rolle’s Theorem
32
Rolle’s Theorem
33
Rolle’s Theorem
34
Rolle’s Theorem
35
Rolle’s Theorem
36
Rolle’s Theorem
37
Rolle’s Theorem
38
Rolle’s Theorem
39
Rolle’s Theorem
40
Rolle’s Theorem
41
Proof
42
Proof
43
The Mean Value Theorem
44
Proof
45
The Mean Value Theorem
46
The Mean Value Theorem
47
The Mean Value Theorem
48
Theorem (Consequence)
If f’(x)=0 for all x in an interval (a,b), then f is constant on (a,b). Q: Can we apply the MVT directly?
49
Corollary (Important)
b
50
Corollary (Important)
b
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.