Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 20 DNA Technology.

Similar presentations


Presentation on theme: "Chapter 20 DNA Technology."— Presentation transcript:

1 Chapter 20 DNA Technology

2 Introduction Sequencing of the human genome was completed by 2007
DNA sequencing has depended on advances in technology, starting with making recombinant DNA In recombinant DNA, nucleotide sequences from two different sources, often two species, are combined in vitro into the same DNA molecule

3 DNA technology has launched a revolution in biotechnology, the manipulation of organisms or their components to make useful products. Microbes to make wine and cheese and the selective breeding of livestock, are examples of biotechnology. Now biotechnology based on manipulations of DNA enables scientists to modify genes and move them between organisms like, bacteria, plants, and animals. DNA technology is now applied in areas ranging from agriculture to criminal law, but its most important achievements are in basic research.

4 Concept 20.1 DNA Cloning To study a particular gene, scientists needed to develop methods to isolate only the small, well-defined, portion of a chromosome containing the gene. Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA.

5 Most methods for cloning pieces of DNA share certain general features.
For example, a foreign gene is inserted into a bacterial plasmid (cloning vector) and this recombinant DNA molecule is returned to a bacterial cell. Every time this cell reproduces, the recombinant plasmid is replicated as well and passed on to its descendents. Under suitable conditions, the bacterial clone will make the protein encoded by the foreign gene.

6 One basic cloning technique begins with the insertion of a foreign gene into a bacterial plasmid.

7 The potential uses of cloned genes fall into two general categories.
First, the goal may be to produce a protein product. For example, bacteria carrying the gene for human growth hormone can produce large quantities of the hormone for treating stunted growth. Alternatively, the goal may be to prepare many copies of the gene itself. This may enable scientists to determine the gene’s nucleotide sequence or provide an organism with a new metabolic capability by transferring a gene from another organism.

8 PCR DNA cloning is the best method for preparing large quantities of a particular gene or other DNA sequence. When the source of DNA is scanty or impure, the polymerase chain reaction (PCR) is quicker and more selective. This technique can quickly amplify any piece of DNA without using cells.

9 The DNA is incubated in a test tube with special DNA polymerase, a supply of nucleotides, and short pieces of single-stranded DNA as a primer. Fig. 20.7

10 PCR can make billions of copies of a targeted DNA segment in a few hours.
This is faster than cloning via recombinant bacteria. In PCR, a three-step cycle: heating, cooling, and replication, brings about a chain reaction that produces an exponentially growing population of DNA molecules. The key to easy PCR automation was the discovery of an unusual DNA polymerase, isolated from bacteria living in hot springs, which can withstand the heat needed to separate the DNA strands at the start of each cycle.

11 PCR has amplified DNA from a variety of sources:
Devised in 1985, PCR has had a major impact on biological research and technology. PCR has amplified DNA from a variety of sources: fragments of ancient DNA from a 40,000-year-old frozen wooly mammoth, DNA from tiny amount of blood or semen found at the scenes of violent crimes, DNA from single embryonic cells for rapid prenatal diagnosis of genetic disorders, DNA of viral genes from cells infected with difficult-to-detect viruses such as HIV.

12 Concept 20.2 DNA Technology Applied to Studying Genes
DNA cloning allows researchers to Compare genes and alleles between individuals Locate gene expression in a body Determine the role of a gene in an organism Several techniques are used to analyze the DNA of genes

13 One indirect method of rapidly analyzing and comparing genomes is gel electrophoresis
This technique uses a gel as a molecular sieve to separate nucleic acids or proteins by size A current is applied that causes charged molecules to move through the gel Molecules are sorted into “bands” by their size

14

15 Concept 20.3 Cloning Organismal cloning produces one or more organisms genetically identical to the “parent” that donated the single cell

16 In nuclear transplantation, the nucleus of an unfertilized egg cell or zygote is replaced with the nucleus of a differentiated cell Experiments with frog embryos have shown that a transplanted nucleus can often support normal development of the egg However, the older the donor nucleus, the lower the percentage of normally developing tadpoles

17

18 In 1997, Scottish researchers announced the birth of Dolly, a lamb cloned from an adult sheep by nuclear transplantation from a differentiated mammary cell Dolly’s premature death in 2003, as well as her arthritis, led to speculation that her cells were not as healthy as those of a normal sheep, possibly reflecting incomplete reprogramming of the original transplanted nucleus

19 Since 1997, cloning has been demonstrated in many mammals, including mice, cats, cows, horses, mules, pigs, and dogs CC (for Carbon Copy) was the first cat cloned; however, CC differed somewhat from her female “parent

20 Concept 20.4 DNA Tech Applications
Techniques for gene manipulation hold great potential for treating disease by gene therapy. This alters an afflicted individual’s genes. A normal allele is inserted into somatic cells of a tissue affected by a genetic disorder. For gene therapy of somatic cells to be permanent, the cells that receive the normal allele must be ones that multiply throughout the patient’s life.

21 Fig

22 Gene therapy raises some difficult ethical and social questions.
Some critics suggest that tampering with human genes, even for those with life-threatening diseases, is wrong. They argue that this will lead to the practice of eugenics, a deliberate effort to control the genetic makeup of human populations.

23 The most difficult ethical question is whether we should treat human embryo cells to correct the defects of future generations. In laboratory mice, transferring foreign genes into egg cells is now a routine procedure. Once technical problems relating to similar genetic engineering in humans are solved, we will have to face the question of whether it is advisable, under any circumstances, to alter the genomes of human embryos. Should we interfere with evolution in this way?

24 From a biological perspective, the elimination of unwanted alleles from the gene pool could backfire. Genetic variation is a necessary ingredient for the survival of a species as environmental conditions change with time. Genes that are damaging under some conditions could be advantageous under other conditions, for example the sickle-cell allele.

25 Final Thoughts As with all new technologies, developments in DNA technology have ethical overtones. Who should have the right to examine someone else’s genes? How should that information be used? Should a person’s genome be a factor in suitability for a job or eligibility for life insurance? Some jobs check your credit, why not your genes? The power of DNA technology and genetic engineering demands that we proceed with humility, caution, and respect.


Download ppt "Chapter 20 DNA Technology."

Similar presentations


Ads by Google