Download presentation
Presentation is loading. Please wait.
1
GEOMETRY ANGLE AND PLANE
2
Isi dengan Judul Halaman Terkait
Angle and Plane Standard Competence Determining line position and angle size that involves point, line and plane in two dimensions Base Competence: 3. Applying flat shape tranformation. Hal.: 2 Isi dengan Judul Halaman Terkait
3
Geometry Transformation
1. Translation Transformation translation of a point P(x,y) is by moving as far as a unit at axis x and b unit at axis y that notated by T = then become a point P’(x’, y’) and: x’ = x + a y’ = y + b See picture 1 P(x’,y’) P(x,y) x y Picture 1 HAL 6 Hal.: 3 Isi dengan Judul Halaman Terkait
4
Geometry Transformation
Example of translation: Given that translation T = and point Q ( 1, 1), then Find the point coordinate Q’. 4 3 Answer: Q(1, 1) Q’=(1 + 4, 1 + 3) Q’=( 5, 4) See picture 2 P’(5,4) P(1,1) Picture 2 HAL 8 Hal.: 4 Isi dengan Judul Halaman Terkait
5
Geometry Transformation Isi dengan Judul Halaman Terkait
2. Reflection 2.1 Pencerminan terhadap garis x = a 2.1 Reflection towards line x = a A point P(x, y) reflected towards line x = a, can be written: M . x = a P (x, y) P’(2a – x, y) 2.2 Reflection towards line y = b A point P(x, y) reflected towards line y= b, can be written: P (x, y) P’(2a – x, y) M . y = b HAL 9 Hal.: 5 Isi dengan Judul Halaman Terkait
6
Geometry Transformation
Example of Reflection: Determine point shadow P (2, 1) if reflected towards: a. Line x = 3 b. Line y = 5 Answer: a. P(2, 1) P’ (2 . 3 – 2, 1) = P’( 4, 1) b. P(2, 1) P’(2, – 1) = P’(2, 9). M . x = 3 M . y = 5 See picture 3 P’(2, 9) . Picture 3 Y x = 3 y = 5 P(2,1) . .P’(4,1) X Hal.: 6 Isi dengan Judul Halaman Terkait
7
Geometry Transformation
3. Rotation Rotation is a transformation that moves every points on the flat shape by rotating very points and it is determined by: Angle size of rotation Center point of rotation Angle direction of rotation. See picture 4 At the rotation towards center point O(0,0) as big as radian with the positive direction then point P(x,y) become P’(x’,y’) that can be stated as: Y P’(x’,y’) P(x,y) x’ = x cos y sin y’ = x sin y cos X Hal.: 7 Isi dengan Judul Halaman Terkait
8
Geometry Transformation
Next Rotation Point Q(-1, 4) rotated like hand of clock towards center point O, Determine the shadow point of Q by rotation (O, 450) Answer: = - 450 x’ = x cos y sin = -1 Cos (- 450) – 4 sin (- 450) = - ½ (- ½ ) = - ½ = y’ = x sin y cos = -1 Sin(-450) + 4 Cos(-450) = -1(-½ ) ½ = ½ = 5/2 ( Then Q’ (3/ , 5/ ) Hal.: 8 Isi dengan Judul Halaman Terkait
9
Geometry Transformation
4. Dilatasi (Multiplication) Dilatasi is a transformation that changes size (make it bigger or smaller) of a flat shape, but it will not change the model of shape: Dilatasi center Dilatasi factor or scale factor See the picture 5 C’ If P(x,y) multiplicated towards center O(0,0) and scale factor k gotten shadow P’(x’,y’) C B’ B O A x’ = k . x, y’ = k . y A ‘ Hal.: 9 Isi dengan Judul Halaman Terkait
10
Geometry Transformation
Example of Dilatasi Determine the point shadow P(2,8) by dilatasi: (0, 2) (0, ½ ) Think it Solving problem: P(2, 8) P’ ( 2 . 2, ) = P’ (4, 12)r P(2, 6) P’ ( ½ . 2, ½ . 6) = P’ (1, 3) (0, 2) (0, ½ ) Then P’(1, 3) Hal.: 10 Isi dengan Judul Halaman Terkait
11
Isi dengan Judul Halaman Terkait
THANK YOU GOOD LUCK Keep studying Hal.: 11 Isi dengan Judul Halaman Terkait
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.