Presentation is loading. Please wait.

Presentation is loading. Please wait.

Barrier Current Flow in Nitride Heterostructures

Similar presentations


Presentation on theme: "Barrier Current Flow in Nitride Heterostructures"— Presentation transcript:

1 Barrier Current Flow in Nitride Heterostructures
Peter Asbeck, S.S.Lau, Ed Yu Lin Jia, Dongjiang Qiao, L.S.Yu UCSD February 12, 2002

2 Outline Potential barriers in nitride devices
Structure and current flow Schottky barriers on p-GaN Status of HET fabrication

3 Hot Electron Transistor (HET)
Depth B C E AlGaN: xAl=0.15 InGaN: xIn=0.10 -0.5 0.5 1 1.5 1000 2000 3000 Depth (Angstrom) Energy (eV) 50A E B C n-AlGaN/GaN n-GaN HET Advantages High mobility base No Mg ionization problems Potentially fast

4 GaN/AlGaN/GaN Barrier
Buffer layer n SiC substrate n- GaN AlGaN n-GaN Schottky Ohmic 0.E+00 5.E+17 1.E+18 1.5E+18 0.1 0.2 0.3 Depth (um) Concentration (cm-3) Materials by R. Davis Group Simulated conduction band energy 3000 -0.5 0.5 1 1.5 1000 2000 Depth (A) Energy (eV) AlGaN layer DV DV Sample Expected Measured xAl 13 % d=100A 1.20eV 1.43eV xAl 13% d=50A eV eV

5 GaN / AlGaN /GaN Barrier I-V Curves Vs Temperature
100A AlGaN Barrier 50A AlGaN Barrier exp(V/Eoo) Eoo ~ 48 meV (independent of temperature) Eoo ~ 38 meV (independent of temperature) Theoretical ~ 5meV

6 GaN / AlGaN /GaN Barrier I-V Curves Vs Temperature
Reverse Characteristics 100A AlGaN Barrier Modified Fowler-Nordheim Plot Fit with Eoo=40meV Theoretical Eoo= 5 meV

7 GaN Schottky Barriers: Reverse Current
Ni on n GaN 3e17cm-3 Fowler-Nordheim Tunneling Through Depletion Region Expect Eoo=5 meV Fit with Eoo= 50 meV

8 Schottky Barrier on n- GaN
Forward current L.S.Yu, S.S.Lau et al, UCSD (1998) T=360K T=220K Log slope largely T invariant => not thermionic emission Very good fit with tunneling formalism except Eoo= 19.5meV fitting Eoo= 3.1meV theory => Defect assisted tunneling

9 Dislocation Effects Line Charge effect:
Electrostatic effects reduce potential barrier, allowing tunneling to occur more readily For reduction of barrier for electrons, require positively charged dislocation n-GaN Easier tunneling Dislocation line charge > 0 Dislocation line charge < 0

10 Trap-Assisted Tunneling
Explains SILC (stress-induced leakage current) in Si nonvolatile memory Explains leakage currents in LT or IT GaAs For point defects separated by ~50A to allow tunneling, need ~ 5e18cm-3 Dislocations can provide states within gap correlated spatially for convenient tunneling

11 Schottky barrier of Ni on p-GaN
contact ohmic Mg doped MOCVD grown Sapphire substrate P~1e17cm-3 Expect Eoo=16 meV Fit with Eoo= 56 meV

12 C-V results of Ni/p-GaN Schottky contact
Cm C rs G Gm Corrections for Rs and Gp Needed to obtain C B=2.68 eV eV

13 Profile of acceptor concentration
Na ~1019/cm3 within 200Å from the sample surface tapers off to ~ 1018/cm3 10 to 100 times higher than p ~1017/cm3 (determined from Hall measurement)

14 HET - Fabrication Approach
Regrown emitter structure Si3N4 n AlGaN n AlGaN n+ GaN n+ GaN n AlGaN n AlGaN SiC SiC E E B B B n+ GaN n AlGaN C C n+ GaN n+ GaN n AlGaN n AlGaN SiC SiC => Base contacts can be formed after alloying of emitter and collector contacts => No need to etch through GaN to reach base

15 HET Fabrication Status
n+GaN 8e18 500A i-GaN A SiN i-GaN A n+ AlGaN 5e A Al:25% n+GaN e A i-AlGaN A Al:15% n+AlGaN e A Al:15% SiC substrate JD634 AlGaN Barrier HET Initial growth NCSU SiN deposition &patterning UCSD Regrowth NCSU Final processing - UCSD

16 Plans Refine HET fabrication Continue barrier current investigation
Continue p contact studies


Download ppt "Barrier Current Flow in Nitride Heterostructures"

Similar presentations


Ads by Google