Download presentation
Presentation is loading. Please wait.
1
Neutrino Masses and Flavor Mixing H. Fritzsch
2
momentum - energy not conserved!
3
W. Pauli 1930 „Neutron“
5
electron
6
Savannah river reactor
1956: discovery of the neutrino Savannah river reactor
7
(Fred Reines – Clyde Cowan)
8
n-capture by cadmium
9
Standard Model I
10
Standard Model neutrinos massless no mixing of neutrinos
11
electroweak gauge group SU(2,L) x SU(2,R) x U(1)
neutrino masses
13
===> Grand Unification SU(2,L) x SU(2,R)
14
SU(3) x SU(2) x U(1) SU(4) x SU(2) x SU(2) ~ SO(6) x SO(4) =>SO(10) Fritzsch / Minkowski
15
Bruno Pontecorvo
16
neutrino mixing
17
(1957) (1976) Physics Letters 62B, 76 B. Pontecorvo Phys. JETP 6, 429
H. Fritzsch - P. Minkowski Physics Letters 62B, 76 (1976)
18
neutrino oscillations
A neutrino is produced with a certain momentum. The different mass eigenstates propagate with different velocities, less than the speed of light. neutrino neutrino oscillations
21
neutrino oscillation
23
only mass differences enter
24
Sun
26
1963 Calculation of solar flux John Bahcall
27
1965 => Homestake Goldmine
SouthDakota
29
solar neutrino deficit observed: 0.5 neutrinos / day
expected: 1.5 neutrinos / day observed: 0.5 neutrinos / day solar neutrino deficit
30
Kamioka
31
speziell gegen dem Ende zu.
Kamiokande Kamioka Nucleon Decay Experiment Ewigkeit ist lang, speziell gegen dem Ende zu. W.A.
32
40 m
33
2001 => Kanada Sudbury Neutrino Obervatory SNO
34
SNO: neutral current ( no oscillations )
35
flavor mixing - quarks CKM - matrix
36
observed CKM - matrix
37
weak transitions and weak mixing
38
:H. Fritzsch – Z. Xing
40
flavor mixing angles - fermion masses
41
- - III 2 families flavor mixing II I
42
mass matrices: texture 0 u,c - d,s H. Fritzsch S. Weinberg 1978
43
mixing angles <=> masses
- mixing angles <=> masses
44
Cabibbo angle
45
Cabibbo angle ==>
46
- 3 families III flavor mixing II I
47
- texture zeros
48
-
49
-
50
-
51
- unitarity triangle
53
Cabibbo angle unitarity triangle (rectangular)
54
-
55
- LHCb:
56
- Maximal CP-violation
57
relations between quark masses ?
Observed: m(c) : m(t) = m(u):m(c) 1/ /207 m(s):m(b) = m(d):m(s) 1/ /23
58
ln m
59
QED-corrections
60
neutrino mixing matrix
(==> CKM Matrix)
61
V = U P Fritzsch - Xing
62
n Kamiokande - SNO
63
3 texture zeros
64
Observed ==>
65
observation weak mass hierarchy
66
==> neutrino masses
67
0.05 eV - 0.01 eV 0.01 eV - 0.004 eV -
68
m(1) = ( 0.0040 +/- 0.001 ) eV m(2) = ( 0.0096 +/- 0.002 )eV m(3) = ( 0.049 eV +/- 0-007 ) eV
normal mass hierarchy
69
masses (relative)
70
normal spectrum inverted spectrum
71
weak mass hierarchy for neutrinos large mixing angles
72
Neutrino Mixing Matrix
???
73
ln m
74
ln m ?
75
radiative corrections
76
ln m
77
-muon and tauon mass- only small changes by radiative corrections
79
ln m
80
-
82
Daya Bay
83
Daya Bay
84
Daya Bay
85
Daya Bay
86
observed CKM - matrix
87
mixing of leptons
88
???????? ??????? neutrino masses very small
89
Dirac mass ? Majorana mass ?
91
Dirac mass Majorana mass
92
Superposition of Dirac mass and Majorana mass:
See-Saw Mechanism D: Dirac mass M: Majorana mass
93
History Seesaw T. Yanagida 1979
Footnote: H. Fritzsch, M. Gell-Mann, P. Minkowski, PLB 59 (1975) 256 T. Yanagida M. Gell-Mann, P. Ramond, R. Slansky
94
neutrino = antineutrino
Majorana masses no fermion number neutrino = antineutrino
95
decay ~ Majorana mass term
97
Gran Sasso Laboratory
100
Cuoricino 130Te
101
Majorana neutrino mass < ev
102
relevant mass term: expected: factor 15 improvement !?
103
maximal CP-violation
104
===> reactor neutrinos
maximal CP – violation (leptons) ===> reactor neutrinos
105
Conclusions neutrinos:
m very small: m<0.1 eV
106
neutrino oscillations
le lepton flavor mixing neutrino oscillations (large mixing angles)
107
3 texture zeros
108
m(1): ~ eV m(2): ~ 0.01 eV m(3): ~ 0.05 eV
109
Dirac mass ? Majorana mass ?
110
double beta decay Cuoricino Experiment m< 0.23 eV expected: eV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.