Presentation is loading. Please wait.

Presentation is loading. Please wait.

Status and perspectives of measurements of Vub and g

Similar presentations


Presentation on theme: "Status and perspectives of measurements of Vub and g"— Presentation transcript:

1 Status and perspectives of measurements of Vub and g
BaBar (pictures) and title Gianluca Cavoto INFN and Università Roma ‘La Sapienza’ BaBar Collaboration LHC Flavour Workshop CERN – 7-10 nov 2005 G.Cavoto

2 The reference Unitarity Triangle
L.Silvestrini, LP’05 g and Vub from pure tree level processes! Assumptions: 3 generations only No new physics at tree level Any new physics must satisfy this constraint Mainly results from BaBar (Summer 2005) G.Cavoto

3 Vub, inclusive and exclusive
large signal rate, large Xcl background Select limited region of phase space Total rate evaluates from OPE Non-perturbative contribution: Shape Function determined experimentally from bsg, bcl BNLP S.W. Bosch, B.O. Lange, M. Neubert, G. Paz, Nucl. Phys. B 669, 355 (2004) B.O. Lange, M. Neubert, G. Paz, hep-ph/ BLL C.W. Bauer, Z. Ligeti, M. Luke, hep-ph/ Form Factor 1: 2: Exclusive Low signal rate, background rejection (kin. constraint) FormFactors normalization (Vub) : theory error FF shape (acceptance) affects exp’l uncert. G.Cavoto

4 Measuring Vub, experimental methods
Tagging methods G.Cavoto

5 Vub: inclusive analyses
Endpoint spectrum 2.0 < Ee < 2.6 GeV |Vub| = (4.44 ± 0.25exp ± 0.22th-BLNP) x 10-3 +0.42 – 0.38SF s ~ 12% b →sg, b →clv moments (BaBar) [O.Buchmuller and H.Flacher, hep-ph/ ] MX vs q2 : hadronic tag Neutrino reconst.: El vs q2 b→cln and other bkg signal region signal region sideband region non-signal b→uln signal b→uln q2 cut |Vub|BLL = (4.82 ±0.26stat ± 0.25syst±0.46SF+theo) x 10-3 s ~ 12% +0.46 – 0.36 SF |Vub|BLNP(BaBar b→cln) = (4.65 ±0.24stat ± 0.24syst ±0.23th) x 10-3 s ~ 13% hep-ex/ 211 fb-1 G.Cavoto

6 Results (and current limitations)
HFAG results are rescaled to common HQE inputs: mb=4.60±0.04 GeV, μπ2=0.20±0.04 GeV2 Results (and current limitations) Eℓ endpoint Limited by uncertainties on SF paramaters (mb) Improve inputs from bcln and b sg Improve SF evaluation Weak annihilation Should be small (2%) Can be checked with B0/B+ comparison Eℓ vs. q2 mX mX vs. q2 expt mb, theory G.Cavoto

7 Vub: exclusive, Bpln,rln
Untagged Binning in q2 Semileptonic tag No phase space cut Coarse q2 binning Hadronic tag Low background, no phase space cut!!! Low signal rate More channels in progress: G.Cavoto

8 Vub: exclusive results
Full q2 range FNAL LQCD Projection to 1 ab-1 (data taken to be on BK fit curve from present measurement). In the high q2 region alone, branching fraction at (6-7)% , or (3-3.5)% on |Vub |. Lattice expect to reach 6% G.Cavoto

9 experimental systematics
MX spectrum Vub: outlook 250 fb-1 500 fb-1 technique D|Vub| / |Vub | (%) Statistical experimental systematics El > 2.0 GeV 2 → 1 3 El vs. q2 3 → 2 4 MX vs. q2 5 → 3 5 Projection to 1 ab-1 Inclusive Combination of larger dataset and confidence in theory (subleading SF ): 5-7% 210 fb-1 sexp(%) 1000 fb-1 sexp(%) hadronic tag 17 9 semileptonic tag 13 n reconstruction 8 Exclusive Need help from theory: Uncertainty on |Vub| dominated by theory error! (~15%) Reliable error estimate for rln FF  needed for p and r BF and |Vub| Progress in LQCD for pln : theory error 6-7% ? (Lubicz, Lattice04; Bernard CKMWS 05) Big improvements possible total error ~ 9% G.Cavoto

10 g from direct CP violation
Interference when D final state common to both D0 and D0 Relative size (rB) of B decay amplitudes Larger rB, larger interference, better g experimental precision (degrees) 0.1 0.2 G.Cavoto

11 Gronau London Wyler method
Gronau & London, PLB 253, 483 (1991), Gronau & Wyler, PLB 265, 172 (1991)]. Gronau London Wyler method D decays into CP eigenstate Theoretically clean, but with 8-fold ambiguity Select CP-even and CP-odd final states 3 observables, 3 unknowns Experimentally Normalize to D0 decay into flavour state (K-p+) CP modes: small D0 branching ratio G.Cavoto

12 Systematic uncertainties hardly visible !
GLW results Systematic uncertainties hardly visible ! PRD71,031102(2005) ACP RCP DCP+ DCP- ! Large value  (rB)² (D0K- ) = -0.17±0.16  (rsB)² (D0K*-) = 0.30±0.25 G.Cavoto

13 Atwood Dunietz Soni method
Atwood, Dunietz, & Soni, PRL 78, 3257 (1997), PRD 63, (2001) Atwood Dunietz Soni method D decay into flavor state dB dD Count B candidates with opposite sign kaons Input: Phys.Rev.Lett.91:171801,2003 D decay strong phase dD unknown G.Cavoto

14 (Bayesian r*B²>0 & uniform,  g and dD*)
hep-ex/ 232×106 BB ADS: results 0<dD<2p rD±1s 51°<g<66° g[0,p] 90% CL B-→D0K- * B-→D*0[D0p0]K- No DCS signal … D*0→D0p0/D0g ≠ in dD* by p (r*B)²< 90% CL (Bayesian r*B²>0 & uniform,  g and dD*) Bondar & Gershon PRD70,091503(2004) B-→D*0[D0g]K- G.Cavoto

15 B- D(*)0 K- D0(KSpp) Dalitz analysis
Giri, Grossman, Soffer, & Zupan, PRD 68, (2003), Bondar (Belle), PRD 70, (2004) If we knew the charm phase shift dD? B- D(*)0 K- D0(KSpp) Dalitz analysis Amplitude for B-/B+  “D0”K-/K+ Sensitivity to g Isobar model for f(m2+ ,m2- ) can fix phase variation dD across Dalitz plot. Only two-fold ambiguity in g extraction r(770) DCS K*(892) g=75,d=180,rB=0.125 G.Cavoto

16 D0(KSp+p-) Dalitz model
Determined on D* D0p sample D0(KSp+p-) Dalitz model D0 decay model  coherent sum of Breit-Wigner (BW) amplitudes (quasi 2 body terms). CA K*(892) 13 distinct resonances (3 WS DCS) + 1 NR term. This isobar model is not so good for pp S waves  need controversial s(500) / s’(1000) to describe reasonably well the data. Plot of mpipi r(770) Better description of quasi 2-body terms: BW + pp S-waves with K-matrix formalism Anisovich & Saratev Eur. Phys. J A16, 229 (2003) DCS K*(892) No D-mixing, No CP violation in D decays G.Cavoto

17 g=[67°±28°(stat.) ±13°(syst. exp.) ± 11°(Dalitz model*) ]
g from Dalitz 2 s CL 1 s CL (stat. only) 2D ~ y*± ~ D0K- D*0K- B- B+ B- d  2 rB|sing|≠0  size of direct CPV d B+ d* x*± X and y def g=[67°±28°(stat.) ±13°(syst. exp.) ± 11°(Dalitz model*) ] *evaluated removing pp S-wave 3° for K-matrix / BW difference G.Cavoto

18 Projected g uncertainty
Model independent approach A.Bondar and A.Poluetkov, hep-ph/ rb =0.2 rb =0.1 Projected sys error due to D0 Dalitz plot Charm and (super)B-factory interplay G.Cavoto

19 Summary By 2008 1 ab-1/B-factory
2005 Many different and independent techniques to constrain Vub and g By ab-1/B-factory Vub inclusive: 5-6% Vub exclusive : dominated by theoretical error total error 8% (?) g Dalitz technique most promising rb critical parameter for sensitivity Dalitz model limit at 5° ? More stat for model indep. Including more modes/techniques adds to 1/N improvements 2008 G.Cavoto

20 Backup slides G.Cavoto

21 UT in 2008 2005 2008 G.Cavoto


Download ppt "Status and perspectives of measurements of Vub and g"

Similar presentations


Ads by Google