Download presentation
Presentation is loading. Please wait.
1
8 Photosynthesis
2
Overview: The Process That Feeds the Biosphere
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 2
3
_________________________________________ _________________________________________
© 2014 Pearson Education, Inc. 3
4
Figure 8.1 Figure 8.1 How can sunlight, seen here as a spectrum of colors in a rainbow, power the synthesis of organic substances? 4
5
(c) Unicellular eukaryotes
Figure 8.2 40 m (d) Cyanobacteria (a) Plants Figure 8.2 Photoautotrophs (b) Multicellular alga 1 m (e) Purple sulfur bacteria 10 m (c) Unicellular eukaryotes 5
6
Concept 8.1: Photosynthesis converts light energy to the chemical energy of food
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 6
7
Chloroplasts: The Sites of Photosynthesis in Plants
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 7
8
_________________________________________ _________________________________________
© 2014 Pearson Education, Inc. 8
9
Leaf cross section Chloroplasts Vein Mesophyll Stomata CO2 O2
Figure 8.3 Leaf cross section Chloroplasts Vein Mesophyll Stomata CO2 O2 Chloroplast Mesophyll cell Figure 8.3 Zooming in on the location of photosynthesis in a plant Outer membrane Thylakoid Granum Thylakoid space Intermembrane space Stroma 20 m Inner membrane 1 m 9
10
Leaf cross section Chloroplasts Vein Mesophyll Stomata CO2 O2
Figure 8.3a Leaf cross section Chloroplasts Vein Mesophyll Figure 8.3a Zooming in on the location of photosynthesis in a plant (part 1: leaf cross section) Stomata CO2 O2 10
11
Chloroplast Mesophyll cell Outer Thylakoid membrane Granum Thylakoid
Figure 8.3b Chloroplast Mesophyll cell Outer membrane Thylakoid Granum Thylakoid space Intermembrane space Stroma 20 m Inner membrane Figure 8.3b Zooming in on the location of photosynthesis in a plant (part 2: chloroplast) 1 m 11
12
Tracking Atoms Through Photosynthesis: Scientific Inquiry
Photosynthesis equation _________________________________________ © 2014 Pearson Education, Inc. 12
13
Reactants: 6 CO2 12 H2O Products: C6H12O6 6 H2O 6 O2 Figure 8.4
Figure 8.4 Tracking atoms through photosynthesis 13
14
Photosynthesis as a Redox Process
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 14
15
becomes reduced becomes oxidized Figure 8.UN01
Figure 8.UN01 In-text figure, photosynthesis equation, p. 158 15
16
The Two Stages of Photosynthesis: A Preview
___________________________(the photo part) ___________________________(the synthesis part) _________________________________________ ________ _________ __________________________________ _____________________________________________________________________________________ © 2014 Pearson Education, Inc. 16
17
Calvin Cycle Light Reactions [CH2O] (sugar)
Figure 8.5 H2O CO2 Light NADP ADP P i Calvin Cycle Light Reactions ATP Figure 8.5 An overview of photosynthesis: cooperation of the light reactions and the Calvin cycle NADPH Chloroplast [CH2O] (sugar) O2 17
18
H2O Light NADP ADP Light Reactions Chloroplast P i Figure 8.5-1
Figure An overview of photosynthesis: cooperation of the light reactions and the Calvin cycle (step 1) Chloroplast 18
19
H2O Light NADP ADP Light Reactions Chloroplast O2 P i ATP NADPH
Figure 8.5-2 H2O Light NADP ADP P i Light Reactions ATP Figure An overview of photosynthesis: cooperation of the light reactions and the Calvin cycle (step 2) NADPH Chloroplast O2 19
20
Calvin Cycle Light Reactions
Figure 8.5-3 H2O CO2 Light NADP ADP P i Calvin Cycle Light Reactions ATP Figure An overview of photosynthesis: cooperation of the light reactions and the Calvin cycle (step 3) NADPH Chloroplast O2 20
21
Calvin Cycle Light Reactions [CH2O] (sugar)
Figure 8.5-4 H2O CO2 Light NADP ADP P i Calvin Cycle Light Reactions ATP Figure An overview of photosynthesis: cooperation of the light reactions and the Calvin cycle (step 4) NADPH Chloroplast [CH2O] (sugar) O2 21
22
1 m (109 nm) 10−5 nm 10−3 nm 1 nm 103 nm 106 nm 103 m Micro- waves
Figure 8.6 1 m (109 nm) 10−5 nm 10−3 nm 1 nm 103 nm 106 nm 103 m Micro- waves Gamma rays Radio waves X-rays UV Infrared Visible light Figure 8.6 The electromagnetic spectrum 380 450 500 550 600 650 700 750 nm Shorter wavelength Longer wavelength Higher energy Lower energy 22
23
Photosynthetic Pigments: The Light Receptors
__________________________________ Animation: Light and Pigments © 2014 Pearson Education, Inc. 23
24
Light Reflected light Chloroplast Absorbed Granum light Transmitted
Figure 8.7 Light Reflected light Chloroplast Figure 8.7 Why leaves are green: interaction of light with chloroplasts Absorbed light Granum Transmitted light 24
25
Pigments in Photosynthesis
_________________ __________________________________________________________________________________
26
T.E. Englemann’s Experiment
Background Information __________________________________________________________________________
27
T.E. Englemann’s Experiment
28
Chloro- phyll a Absorption of light by chloroplast pigments
Figure 8.9a Chloro- phyll a Chlorophyll b Absorption of light by chloroplast pigments Carotenoids 400 500 600 700 Figure 8.9a Inquiry: which wavelengths of light are most effective in driving photosynthesis? (part 1: absorption spectra) Wavelength of light (nm) (a) Absorption spectra 28
29
_________________________________________
__________________________________________________________________________________ Video: Chlorophyll Model © 2014 Pearson Education, Inc. 29
30
Wavelength absorption (%) Wavelength (nanometers)
Chlorophylls Main pigments in most photoautotrophs Wavelength absorption (%) chlorophyll a chlorophyll b Wavelength (nanometers)
31
Accessory Pigments Carotenoids, Phycobilins, Anthocyanins
beta-carotene phycoerythrin (a phycobilin) percent of wavelengths absorbed wavelengths (nanometers)
32
Pigments Fig. 7-3a, p.109
33
Pigments Fig. 7-3b, p.109
34
Pigments Fig. 7-3d, p.109
35
interacts with hydrophobic regions of proteins inside
Figure 8.10 CH3 in chlorophyll a CH3 CHO in chlorophyll b Porphyrin ring: light-absorbing “head” of molecule; note magnesium atom at center Figure 8.10 Structure of chlorophyll molecules in chloroplasts of plants Hydrocarbon tail: interacts with hydrophobic regions of proteins inside thylakoid membranes of chloroplasts; H atoms not shown 35
36
Excitation of Chlorophyll by Light
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 36
37
(a) Excitation of isolated chlorophyll molecule (b) Fluorescence
Figure 8.11 Excited state e− Heat Energy of electron Photon (fluorescence) Photon Figure 8.11 Excitation of isolated chlorophyll by light Ground state Chlorophyll molecule (a) Excitation of isolated chlorophyll molecule (b) Fluorescence 37
38
A Photosystem: A Reaction-Center Complex Associated with Light-Harvesting Complexes
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 38
39
(INTERIOR OF THYLAKOID) Protein subunits THYLAKOID SPACE
Figure 8.12 Photosystem STROMA Photon Light- harvesting complexes Reaction- center complex Primary electron acceptor e Chlorophyll STROMA Thylakoid membrane Thylakoid membrane Transfer of energy Figure 8.12 The structure and function of a photosystem Special pair of chlorophyll a molecules Pigment molecules THYLAKOID SPACE (INTERIOR OF THYLAKOID) Protein subunits THYLAKOID SPACE (a) How a photosystem harvests light (b) Structure of a photosystem 39
40
(INTERIOR OF THYLAKOID)
Figure 8.12a Photosystem STROMA Photon Light- harvesting complexes Reaction- center complex Primary electron acceptor e− Thylakoid membrane Figure 8.12a The structure and function of a photosystem (part 1) Pigment molecules Transfer of energy Special pair of chlorophyll a molecules THYLAKOID SPACE (INTERIOR OF THYLAKOID) (a) How a photosystem harvests light 40
41
Light-Dependent Reactions
photon Photosystem Light-Harvesting Complex Fig. 7-7, p.112
42
_________________________________________ _________________________________________
_________________________________________ __________________________________________________________________________________ © 2014 Pearson Education, Inc. 42
43
_________________________________________
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 43
44
_________________________________________
© 2014 Pearson Education, Inc. 44
45
Linear Electron Flow _________________________________________ __________________________________________________________________________________ © 2014 Pearson Education, Inc. 45
46
cross-section through a disk-shaped fold in the thylakoid membrane
LIGHT- HARVESTING COMPLEX PHOTOSYSTEM II sunlight PHOTOSYSTEM I H+ NADPH e- e- e- e- e- e- NADP + + H+ e- H2O H+ H+ H+ H+ thylakoid compartment H+ H+ H+ H+ H+ H+ O2 H+ thylakoid membrane stroma ADP + Pi ATP cross-section through a disk-shaped fold in the thylakoid membrane H+ Fig. 7-8, p.113
47
Linear Electron Flow 1. ________________________________________ _________________________________________ 2. ________________________________________ _________________________________________ 3. ________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 47
48
2 P680 1 Light Pigment molecules Photosystem II (PS II) Primary
Figure Primary acceptor 2 e− P680 1 Light Figure How linear electron flow during the light reactions generates ATP and NADPH (steps 1-2) Pigment molecules Photosystem II (PS II) 48
49
2 2 H 3 P680 1 Light Pigment molecules Photosystem II (PS II) 1 2
Figure Primary acceptor 2 2 H H2O e− 2 1 3 O2 e− e− P680 1 Light Figure How linear electron flow during the light reactions generates ATP and NADPH (step 3) Pigment molecules Photosystem II (PS II) 49
50
4 Electron transport chain 2 2 H 3 P680 1 5 Light Pigment
Figure 4 Electron transport chain Primary acceptor Pq 2 2 H H2O e− Cytochrome complex 2 1 3 O2 Pc e− P680 1 e− 5 Light ATP Figure How linear electron flow during the light reactions generates ATP and NADPH (steps 4-5) Pigment molecules Photosystem II (PS II) 50
51
Photosystem I (PS I) Photosystem II (PS II)
Figure 4 Electron transport chain Primary acceptor Primary acceptor Pq e− 2 2 H H2O e− Cytochrome complex 2 1 3 O2 Pc e− P700 e− P680 1 5 Light Light 6 ATP Figure How linear electron flow during the light reactions generates ATP and NADPH (step 6) Pigment molecules Photosystem I (PS I) Photosystem II (PS II) 51
52
Photosystem I (PS I) Photosystem II (PS II)
Figure 4 Electron transport chain 7 Electron transport chain Primary acceptor Primary acceptor Fd Pq e− 8 2 NADP e− 2 H H2O e− e− Cytochrome complex H NADP reductase 2 1 3 O2 NADPH Pc e− P700 P680 1 e− 5 Light Light 6 ATP Figure How linear electron flow during the light reactions generates ATP and NADPH (steps 7-8) Pigment molecules Photosystem I (PS I) Photosystem II (PS II) 52
53
4________________________________________ _________________________________________
5________________________________________ _________________________________________ 6________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 53
54
7. _________________________________________
8. _________________________________________ 9. _______________________________________ _________________________________________ 10. _______________________________________ _________________________________________ _________________________________________ 54
55
Mill makes ATP NADPH Photosystem II Photosystem I Photon Photon
Figure 8.14 Mill makes ATP NADPH Photon Figure 8.14 A mechanical analogy for linear electron flow during the light reactions Photon Photosystem II Photosystem I 55
56
Light-Dependent Reactions
photon Photosystem Light-Harvesting Complex Fig. 7-7, p.112
57
cross-section through a disk-shaped fold in the thylakoid membrane
LIGHT- HARVESTING COMPLEX PHOTOSYSTEM II sunlight PHOTOSYSTEM I H+ NADPH e- e- e- e- e- e- NADP + + H+ e- H2O H+ H+ H+ H+ thylakoid compartment H+ H+ H+ H+ H+ H+ O2 H+ thylakoid membrane stroma ADP + Pi ATP cross-section through a disk-shaped fold in the thylakoid membrane H+ Fig. 7-8, p.113
58
Machinery of Noncyclic Electron Flow
H2O second electron transfer chain photolysis e– e– ATP SYNTHASE first electron transfer chain NADP+ NADPH ATP PHOTOSYSTEM II PHOTOSYSTEM I ADP + Pi
59
Electron transport chain ATP synthase
Figure 8.15 MITOCHONDRION STRUCTURE CHLOROPLAST STRUCTURE Inter- membrane space H Diffusion Thylakoid space Electron transport chain Inner membrane Thylakoid membrane Figure 8.15 Comparison of chemiosmosis in mitochondria and chloroplasts ATP synthase Matrix Stroma Key ADP P i ATP Higher [H] H Lower [H] 59
60
Electron transport chain
Figure 8.15a MITOCHONDRION STRUCTURE CHLOROPLAST STRUCTURE Inter- membrane space H Diffusion Thylakoid space Electron transport chain Inner membrane Thylakoid membrane ATP synthase Figure 8.15a Comparison of chemiosmosis in mitochondria and chloroplasts (detail) Matrix Stroma Key ADP P i ATP Higher [H] H Lower [H] 60
61
_________________________________________ __________________________________where the Calvin cycle takes place © 2014 Pearson Education, Inc. 61
62
Calvin Cycle Light Reactions
Figure 8.UN02 H2O CO2 Light NADP ADP Calvin Cycle Light Reactions ATP Figure 8.UN02 In-text figure, light reaction schematic, p. 164 NADPH O2 [CH2O] (sugar) 62
63
Cytochrome complex NADP reductase To Calvin Cycle ATP synthase
Figure 8.16 Cytochrome complex NADP reductase Photosystem II Photosystem I Light 4 H 3 Light NADP H Fd Pq NADPH e− Pc e− 2 H2O 1 2 1 O2 THYLAKOID SPACE (high H concentration) 2 H 4 H To Calvin Cycle Figure 8.16 The light reactions and chemiosmosis: the organization of the thylakoid membrane Thylakoid membrane ATP synthase STROMA (low H concentration) ADP ATP P i H 63
64
Cytochrome complex ATP synthase
Figure 8.16a Cytochrome complex Photosystem II Photosystem I Light 4 H Light Fd Pq Pc e− 2 e− H2O 1 2 1 O2 THYLAKOID SPACE (high H concentration) 2 H 4 H Figure 8.16a The light reactions and chemiosmosis: the organization of the thylakoid membrane (part 1) Thylakoid membrane ATP synthase STROMA (low H concentration) ADP ATP P i H 64
65
Cytochrome complex NADP reductase To Calvin Cycle ATP synthase
Figure 8.16b Cytochrome complex NADP reductase Photosystem I Light 3 NADP H Fd NADPH Pc 2 THYLAKOID SPACE (high H concentration) 4 H To Calvin Cycle Figure 8.16b The light reactions and chemiosmosis: the organization of the thylakoid membrane (part 2) ATP synthase STROMA (low H concentration) ADP ATP P i H 65
66
Concept 8.3: The Calvin cycle uses the chemical energy of ATP and NADPH to reduce CO2 to sugar
_________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 66
67
Concept 8.3: The Calvin cycle
_________________________________________ ____________________________________(2 are then bonded to form the glucose) _________________________________________ __________________ _______________ © 2014 Pearson Education, Inc. 67
68
(ribulose bisphosphate)________________________
_________________________________________ _________________________________________ (ribulose bisphosphate)________________________ ___________________________________________ © 2014 Pearson Education, Inc. 68
69
Calvin Cycle Light Reactions
Figure 8.UN03 H2O CO2 Light NADP ADP Calvin Cycle Light Reactions ATP Figure 8.UN03 In-text figure, Calvin cycle schematic, p. 168 NADPH O2 [CH2O] (sugar) 69
70
Phase 1: Carbon fixation Rubisco
Figure Input 3 as 3 CO2 Phase 1: Carbon fixation Rubisco 3 P P 3 P P 6 P RuBP 3-Phosphoglycerate Calvin Cycle Figure The Calvin cycle (step 1) 70
71
Phase 1: Carbon fixation Rubisco
Figure Input 3 as 3 CO2 Phase 1: Carbon fixation Rubisco 3 P P 3 P P 6 P RuBP 3-Phosphoglycerate 6 ATP 6 ADP Calvin Cycle 6 P P 1,3-Bisphosphoglycerate 6 NADPH 6 NADP 6 P i Figure The Calvin cycle (step 2) 6 P G3P Phase 2: Reduction Glucose and other organic compounds 1 P G3P Output 71
72
Phase 1: Carbon fixation Rubisco
Figure Input 3 as 3 CO2 Phase 1: Carbon fixation Rubisco 3 P P 3 P P 6 P RuBP 3-Phosphoglycerate 6 ATP 6 ADP 3 ADP Calvin Cycle 6 P P 3 ATP 1,3-Bisphosphoglycerate 6 NADPH Phase 3: Regeneration of RuBP 6 NADP 6 P i 5 P Figure The Calvin cycle (step 3) G3P 6 P G3P Phase 2: Reduction Glucose and other organic compounds 1 P G3P Output 72
73
_________________________________________ _________________________________________
© 2014 Pearson Education, Inc. 73
74
_________________________________________ _________________________________________
© 2014 Pearson Education, Inc. 74
75
Evolution of Alternative Mechanisms of Carbon Fixation in Hot, Arid Climates
_________________________________________ _________________________________________ ________________________________________… …________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 75
76
C3 Plants Fig. 7-11a1, p.116
77
C3 Plants upper epidermis palisade mesophyll spongy mesophyll lower
stoma leaf vein air space Basswood leaf, cross-section. Fig. 7-11a2, p.116
78
C4 Plants Fig. 7-11b1, p.117
79
C4 Plants _________________________________________ _________________________________________ _________________________________________ © 2014 Pearson Education, Inc. 79
80
C4 Plants upper epidermis mesophyll cell bundle- sheath cell lower
Fig. 7-11b2, p.117
81
Calvin Cycle Calvin Cycle
Figure 8.18 Sugarcane Pineapple 1 1 CO2 CO2 C4 CAM Mesophyll cell Organic acid Organic acid Night CO2 2 CO2 2 Figure 8.18 C4 and CAM photosynthesis compared Bundle- sheath cell Day Calvin Cycle Calvin Cycle Sugar Sugar (a) Spatial separation of steps (b) Temporal separation of steps 81
82
Calvin Cycle Calvin Cycle
Figure 8.18c 1 1 CO2 CO2 C4 CAM Mesophyll cell Organic acid Organic acid Night CO2 2 CO2 2 Bundle- sheath cell Day Calvin Cycle Calvin Cycle Figure 8.18c C4 and CAM photosynthesis compared (part 3: detail) Sugar Sugar (a) Spatial separation of steps (b) Temporal separation of steps 82
83
CAM Plants Fig. 7-11c1, p.117
84
CAM Plants _________________________________________
__________________________________________________________________________________ © 2014 Pearson Education, Inc. 84
85
CAM Plants stoma epidermis with thick cuticle mesophyll cell air space
Fig. 7-11c2, p.117
86
Photosynthesis overview sunlight Light- Dependent Reactions 12H2O 6O2
ADP + Pi ATP NADPH NADP+ 6CO2 Calvin-Benson cycle 6 RuBP 12 PGAL Light- Independent Reactions 6H2O phosphorylated glucose end products (e.g., sucrose, starch, cellulose) Fig. 7-14, p.120
87
Electron transport chain Electron transport chain
Figure 8.19 H2O CO2 Light NADP ADP P i Light Reactions: RuBP 3-Phosphpglycerate Photosystem II Electron transport chain Calvin Cycle Photosystem I Electron transport chain ATP G3P Figure 8.19 A review of photosynthesis Starch (storage) NADPH Chloroplast O2 Sucrose (export) 87
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.