Presentation is loading. Please wait.

Presentation is loading. Please wait.

2/16/2017 Prof Xin (Cindy) Wang

Similar presentations


Presentation on theme: "2/16/2017 Prof Xin (Cindy) Wang"— Presentation transcript:

1 2/16/2017 Prof Xin (Cindy) Wang
MAE 4160/5160 Lecture 10 2/16/2017 Prof Xin (Cindy) Wang

2 Outline for today’s lecture
Continuous systems Revisit: Assembly of stiffness matrix Summarize: numerical quadrature Finite Element in 2D Strong form and Weak form in 2D Vector Calculous: gradient, divergence, directional derivative, Laplacian Green’s Theorem (Special case of divergence theorem) 2D linear elements

3 Revisit: matrix assembly
Global to Local

4 Stiffness and Mass Matrix
K_{ij} = \int^{L}_{0} p(x) \frac{d{\color[rgb]{ , , }\phi_i(x)}}{dx}\frac{d{\color[rgb]{ , , }\phi_j}(x)}{dx} dx 1 2 3 4 5

5 1 2 3 4 5 1 2 3 4 5 M_{22} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx  M_{2,2}= \int_{\textcircled{2}} q(x) {\color[rgb]{ , , }N_2^{\textcircled{2}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{2}}(x)} dx + \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_1^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_1^{\textcircled{3}}(x)} dx

6 1 2 3 4 5 1 2 3 4 5 M_{22} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx  M_{2,2}= \int_{\textcircled{2}} q(x) {\color[rgb]{ , , }N_2^{\textcircled{2}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{2}}(x)} dx + \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_1^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_1^{\textcircled{3}}(x)} dx

7 1 2 3 4 5 M_{22} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx  M_{2,2}= \int_{\textcircled{2}} q(x) {\color[rgb]{ , , }N_2^{\textcircled{2}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{2}}(x)} dx + \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_1^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_1^{\textcircled{3}}(x)} dx 1 2 3 4 5

8 1 2 3 4 5 M_{2,3} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_3(x)} dx  M_{2,3}= \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_1^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{3}}(x)} dx 1 2 3 4 5

9 1 2 3 4 5 1 2 3 4 5 M_{3,3}=\int_{\textcircled{3}} q(x) {\color[rgb]{ , , }\phi_3(x) }{\color[rgb]{ , , }\phi_3(x)} dx \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_2^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{3}}(x)} dx  M_{2,2}= \int_{\textcircled{1}} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx + \int_{\textcircled{2}} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx

10 1 2 3 4 5 1 2 3 4 5 M_{22} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx  M_{2,2}= \int_{\textcircled{1}} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx + \int_{\textcircled{2}} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx

11 1 2 3 4 5 1 2 3 4 5 M_{22} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx  M_{3,3}= \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_2^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{3}}(x)} dx + \int_{\textcircled{4}} q(x) {\color[rgb]{ , , }N_1^{\textcircled{4}}(x) }{\color[rgb]{ , , }N_1^{\textcircled{4}}(x)} dx

12 Recap: Global to Local

13 1 2 3 4 5 M_{22} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx  M_{2,2}= \int_{\textcircled{2}} q(x) {\color[rgb]{ , , }N_2^{\textcircled{2}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{2}}(x)} dx + \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_1^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_1^{\textcircled{3}}(x)} dx 1 2 3 4 5

14 1 2 3 4 5

15 1 2 3 4 5 1 2 3 4 5 M_{22} = \int^{L}_{0} q(x) {\color[rgb]{ , , }\phi_2(x) }{\color[rgb]{ , , }\phi_2(x)} dx  M_{3,3}= \int_{\textcircled{3}} q(x) {\color[rgb]{ , , }N_2^{\textcircled{3}}(x) }{\color[rgb]{ , , }N_2^{\textcircled{3}}(x)} dx + \int_{\textcircled{4}} q(x) {\color[rgb]{ , , }N_1^{\textcircled{4}}(x) }{\color[rgb]{ , , }N_1^{\textcircled{4}}(x)} dx

16 Reverse the order: local to global
Implementation: Reverse the order: local to global

17 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

18 PseudoCode for Matrix Assembly
For every element If Boundary element Take care of boundary conditions Else For every local basis i in element For every local basis j in element Integrate {q(x) * Ni(x)Nj(x) } over elelment Find out which global basis i and global basis j Add to existing K(global basis i, global basis j)

19 Bandwidth of Matrices K_{ij} = \int^{L}_{0} p(x) \frac{d{\color[rgb]{ , , }\phi_i(x)}}{dx}\frac{d{\color[rgb]{ , , }\phi_j}(x)}{dx} dx What is the bandwidth of the matrices for pth order FEA element?

20 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

21 Numerical Integration/Quadrature

22 Gaussian Quadrature Integrates p orders of polynomials exactly for given m!

23 Solutions of matrix-vector equation
a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots\\ a_n \end{bmatrix} \tilde{u}(x) = \sum^n_{i=1} a_i\phi_i(x) 5 2 3 4 1

24 FEA – Road Map Strong form 1 2 3 4 5 Weak form
Weak form FEA basis expansion (Meshing) FEA matrix-vector assembly Solve for K a + M a = f

25

26

27

28


Download ppt "2/16/2017 Prof Xin (Cindy) Wang"

Similar presentations


Ads by Google