Download presentation
Presentation is loading. Please wait.
Published byLindsey Fox Modified over 6 years ago
1
Infrared Polarization and Interstellar Grain Models 红外偏振与星际尘埃模型 李祺 (湘潭大学) 导师:李爱根
星际尘埃模型:简介 星际偏振对尘埃模型的限止 结果与讨论 2014年7月15-19日 大连
2
Interstellar Dust Models
Any dust model composition, size, shape, morphology, elemental depletion; Observational constraints wavelength dependent extinction dust size; wavelength dependent polarization dust shape, size; absorption and emission spectra dust composition; near, mid, far-IR continuum emission dust size; cosmic abundance (depletion) dust composition;
3
Interstellar Polarization
Large grains nonspherical and aligned; Small grains spherical and/or not aligned;
4
Interstellar Dust Models
3 key models Core-mantle model (Li & Greenberg 1997); Composite dust model (Mathis & Whiffen 1989); Silicate/graphite-PAH model (Mathis et al. 1977; Draine & Lee 1984; Li & Draine 2001; Weingartner & Draine 2001); All models consist of amorphous silicates, carbon dust, PAHs; span a wide range of grain sizes (a few Å to a few µm); all satisfy some observational constraints; Key question: What structural forms interstellar grains take?
5
Core-Mantle Dust Model
硅酸盐 核 + 碳质尘埃壳 Silicate core: 9.7µm Si-O, 18µm O-Si-O features Carbon dust mantle: 3.4µm aliphatic C-H feature Li & Greenberg 1997
6
Composite Dust Model Mathis (1996) composite collections of
small silicates; small graphite, amorphous carbon, HAC; Vacuum (45%);
7
Silicate-Graphite-PAH Model
Silicate dust, graphite dust, PAHs are physically separated! “MRN” (Mathis et al. 1977) Draine & Lee (1984) Weingartnetr & Draine (2001) Li & Draine (2001) Draine & Li (2007)
8
Spectropolarimetric Constraints: Polarized Silicate Features
Becklin-Neugebauer object in OMC-1 (Aitken et al. 1989); 9.7µm Si-O stretching mode, 18µm O-Si-O bending mode;
9
Silicate Polarization Core-Mantle Model: Good!
Greenberg & Li (1996, A&A, 309, 258)
10
Silicate Polarization Composite Model: Not Good!
Henning & Stognienko (1993, A&A, 280, 609)
11
Silicate Polarization Silicate/Graphite Model: Not Good!
Aitken et al. (1989, MNRAS, 236, 919)
12
Core-Mantle Dust Model
硅酸盐 核 + 碳质尘埃壳 Silicate core: 9.7µm Si-O, 18µm O-Si-O features Carbon dust mantle: 3.4µm aliphatic C-H feature 如果9.7µm, 18µm 光谱特征有偏振 硅酸盐核 非球形,排列! 3.4µm光谱特征也应该有偏振! Li & Greenberg 1997
13
Unpolarized 3.4µm Feature (Aliphatic Hydrocarbon C-H Stretching Mode) Core-Mantle Model: Not Good? (Adamson et al. 1999; Chiar et al. 2004)
14
Core-Mantle Grains: 9. 7, 18µm silicate features polarized 3
Core-Mantle Grains: 9.7, 18µm silicate features polarized 3.4µm hydrocarbon feature polarized! (Li & Greenberg 2002, ApJ, 577, 789)
15
Nonspherical Core + Spherical Mantle Dust?
9.7µm Si-O feature polarized 3.4µm C-H feature polarized! (Li, Liang & Li 2014, MNRAS, 440, L56 )
16
Nonspherical Core + Spherical Mantle Dust?
9.7µm Si-O feature polarized 3.4µm C-H feature polarized! (Li, Liang & Li 2014, MNRAS, 440, L56 )
17
Composite Dust? 9.7µm Si-O feature polarized 3.4µm C-H feature polarized! (Li, Liang & Li 2014, MNRAS, 440, L56 )
18
Future Work #1 Nonspherical silicate core
with an equal-thickness carbon mantle? Silicate dust and carbon dust are physically separated? The 3.4µm hydrocarbon dust component is just minor in nature?
19
Future Work #2 What Can We Learn from AFGL 2591?
3.1µm ice feature: not polarized (Kobayashi et al. 1980) ; 9.7,18µm silicate feature polarized; silicates annealed (Aitken et al. 1988); Non-spherical core-spherical mantle grains? Radiative torques?
20
Silicate Features: Polarized
AFGL 2591: annealed silicates (Aitken et al. 1988); Smith et al. 2000; Wright et al. 2001;
21
BN Object: Ice Feature Polarized (Kobayashi et al. 1980)
22
W33A: CO (4.67µm), XCN (4.62µm) Features Polarized (Chrysostomou et al. 1996)
23
Bare Silicate/Graphite Model?
The 3.4µm Feature Carrier? Henning & Schnaiter (1998): Nano-sized hydrogenated carbon grains 2175Å extinction hump and 3.4µm feature common origin? HD204827, Taurus cloud: with 3.4µm feature, no 2175Å extinction hump (Valencic et al. 2003, Whittet et al. 2004);
24
Summary Polarimetric data provide powerful constraints on dust models
grain geometry; grain size; grain composition; Existing polarimetric data bare silicate/graphite model: 9.7, 18µm silicate polarization? composite model: 9.7, 18µm silicate polarization core-mantle model: 3.4µm hydrocarbon polarization?
25
Composite Grain Models vs. Far-IR Polarization
Polarized thermal far-IR emission reveals magnetic field geometry; grain geometry; grain dielectric function ε(λ) = ε1 + iε2; No polarization when ε(λ) 1; can very “fluffy” composite grains produce large far-IR polarization?
26
Large Far-IR Polarizations Are Observed!
SCUBA 850µm: 9.1% polariz. on M82 (Greaves et al. 2000);
27
Large Far-IR Polarizations Are Observed!
SCUBA 850µm: 11.9% polariz. on OMC-3 (Matthews & Wilson 2000);
28
Interstellar Extinction
2 grain populations: a < 100 Å; a>0.1 µm; Characterized by RV=AV/E(B-V); 2175 Å hump Stecher 1965; stable λ0 ; variable FWHM;
29
Interstellar Polarization
Large grains nonspherical and aligned; Small grains spherical and/or not aligned;
30
Interstellar Polarization
DCB Whittet (2003); λmax ~ RV ~ dust size; Pmax/AV ≤3%/mag; HD (top) λmax =0.42µm; HD (bottom) λmax =0.58µm; Martin et al. (1999)
31
Interstellar Polarization Features
2175 Å hump polarization HD (top) λmax=0.51µm; (Clayton et al. 1992); ρ Oph (bottom) λmax =0.68µm (Wolff et al. 1997); (ΔP2175Å/ΔA2175Å)/ (PV/AV) ≤ 0.09;
32
Absorption Features Silicate Aliphatic carbon Ices
9.7 µm: Si-O stretching; 18 µm: O-Si-O bending; amorphous; Aliphatic carbon 3.4 µm C-H band not seen in dense clouds; Ices H2O 3.1, 6.0 µm; CO 4.68 µm; CO2 4.28, 15.2 µm; CH3OH 3.54,9.75 µm; H2CO 5.81 µm; CH µm; NH µm;
33
Absorption Features Aliphatic hydrocarbon Aromatic hydrocarbon
3.4 µm C-H stretching band; Diffuse ISM; PPN CRL 618; Other galaxies; Aromatic hydrocarbon 3.3 µm C-H stretching; 6.2 µm C-C stretching;
34
Infrared Emission Classic grains Ultrasmall grains:
Td ~ 20K; emit at λ>60 µm; ~ 2/3 of total emitted power; Ultrasmall grains: PAHs (~10% C); a<100 Å; emit at λ<60 µm; stochastic heating; ~ 1/3 of total power; Ultrasmall silicate grains: ≤5% (Li & Draine 2001a);
35
Elemental Depletions [X/H]gas <[X/H]๏;
≥90% of Si, Mg, Fe and ≥60% of C, O are locked up in dust; Dust composition: Silicate, carbon
36
Interstellar Polarization Features
9.7,18µm silicate: polariz. Becklin-Neugebauer object; Aitken et al. (1989); Greenberg & Li (1996); 3.4µm hydrocarbon: one obs: unpolarized; PAHs bands: unpolariz.; Far-IR emission: polariz.; Ice bands: polarized; 3.1µm H2O; 4.67µm CO; 4.62µm XCN-;
37
Core-Mantle Model Li & Greenberg (1997)
silicate core; carbon mantle; PAHs + small graphitic grains; dust destruction τdes≈ yrs; dust injection τpro≈ yrs; mantle (accretion; protection);
38
Core-Mantle Model 3.4µm C-H carbon (Greenberg, Li, et al. 1995)
9.7,18µm silicate polarizat. (Greenberg & Li 1996)
39
Silicate Polarization Silicate/graphite Model: Not Good
Silicate Polarization Silicate/graphite Model: Not Good! (Greenberg & Li, 1996, A&A, 309, 258)
40
Future Work Obtain spectropolarimetric 3.4µm and 9.7, 18µm data for the same lines of sight; Are there regional variations in the interstellar silicate absorption and polarization profiles? synthesize dielectric functions for “astronomical silicates” in different regions; Study mid and far-IR polarization properties of different grains using DDA) non-spherical core-spherical mantle grains; can fluffy composite grains produce large far-IR polarization?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.