Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nuclear Chemistry Chapter 22.

Similar presentations


Presentation on theme: "Nuclear Chemistry Chapter 22."— Presentation transcript:

1 Nuclear Chemistry Chapter 22

2 X Atomic number (Z) = number of protons in nucleus
Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number X A Z Element Symbol Atomic Number 1p 1 1H or proton 1n neutron 0e -1 0b or electron 0e +1 0b or positron 4He 2 4a or a particle A 1 1 4 Z 1 -1 +1 2 21.1

3 Balancing Nuclear Equations
Conserve mass number (A). The sum of protons plus neutrons in the products must equal the sum of protons plus neutrons in the reactants. 1n U 235 92 + Cs 138 55 Rb 96 37 + 2 = x1 Conserve atomic number (Z) or nuclear charge. The sum of nuclear charges in the products must equal the sum of nuclear charges in the reactants. 1n U 235 92 + Cs 138 55 Rb 96 37 + 2 = x0 21.1

4 212Po decays by alpha emission
212Po decays by alpha emission. Write the balanced nuclear equation for the decay of 212Po. 4He 2 4a or alpha particle - 212Po He + AX 84 2 Z 212 = 4 + A A = 208 84 = 2 + Z Z = 82 212Po He + 208Pb 84 2 82 21.1

5 21.1

6 Nuclear Stability and Radioactive Decay
Beta decay 14C N + 0b + n 6 7 -1 Decrease # of neutrons by 1 40K Ca + 0b + n 19 20 -1 Increase # of protons by 1 1n p + 0b + n 1 -1 Positron decay 11C B + 0b + n 6 5 +1 Increase # of neutrons by 1 38K Ar + 0b + n 19 18 +1 Decrease # of protons by 1 1p n + 0b + n 1 +1 n and n have A = 0 and Z = 0 21.2

7 Nuclear Stability and Radioactive Decay
Electron capture decay 37Ar + 0e Cl + n 18 17 -1 Increase # of neutrons by 1 55Fe + 0e Mn + n 26 25 -1 Decrease # of protons by 1 1p + 0e n + n 1 -1 Alpha decay Decrease # of neutrons by 2 212Po He + 208Pb 84 2 82 Decrease # of protons by 2 Spontaneous fission 252Cf In + 21n 98 49 21.2

8 positron decay or electron capture
n/p too large beta decay X Y n/p too small positron decay or electron capture 21.2

9 Nuclear Stability Certain numbers of neutrons and protons are extra stable n or p = 2, 8, 20, 50, 82 and 126 Like extra stable numbers of electrons in noble gases (e- = 2, 10, 18, 36, 54 and 86) Nuclei with even numbers of both protons and neutrons are more stable than those with odd numbers of neutron and protons All isotopes of the elements with atomic numbers higher than 83 are radioactive All isotopes of Tc and Pm are radioactive 21.2

10 BE = 9 x (p mass) + 10 x (n mass) – 19F mass
Nuclear binding energy (BE) is the energy required to break up a nucleus into its component protons and neutrons. BE + 19F p + 101n 9 1 E = mc2 BE = 9 x (p mass) + 10 x (n mass) – 19F mass BE (amu) = 9 x x – BE = amu 1 amu = 1.49 x J BE = 2.37 x 10-11J binding energy per nucleon = binding energy number of nucleons = 2.37 x J 19 nucleons = 1.25 x J 21.2

11 Nuclear Fission Nuclear chain reaction is a self-sustaining sequence of nuclear fission reactions. The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the critical mass. Non-critical Critical 21.5

12 Schematic diagram of a nuclear fission reactor
21.5

13 Annual Waste Production
Nuclear Fission 35,000 tons SO2 4.5 x 106 tons CO2 1,000 MW coal-fired power plant 3.5 x 106 ft3 ash Annual Waste Production 1,000 MW nuclear power plant 70 ft3 vitrified waste 21.5

14 Hazards of the radioactivities in spent fuel compared to uranium ore
Nuclear Fission Hazards of the radioactivities in spent fuel compared to uranium ore 21.5 From “Science, Society and America’s Nuclear Waste,” DOE/RW-0361 TG

15 Chemistry In Action: Nature’s Own Fission Reactor
Natural Uranium % U % U-238 Measured at Oklo % U-235

16 Tokamak magnetic plasma confinement
Nuclear Fusion Fusion Reaction Energy Released 2H + 2H H + 1H 1 6.3 x J 2H + 3H He + 1n 1 2 2.8 x J 3.6 x J 6Li + 2H He 3 1 2 Tokamak magnetic plasma confinement 21.6

17 Radioisotopes in Medicine
1 out of every 3 hospital patients will undergo a nuclear medicine procedure 24Na, t½ = 14.8 hr, b emitter, blood-flow tracer 131I, t½ = 14.8 hr, b emitter, thyroid gland activity 123I, t½ = 13.3 hr, g-ray emitter, brain imaging 18F, t½ = 1.8 hr, b+ emitter, positron emission tomography 99mTc, t½ = 6 hr, g-ray emitter, imaging agent Brain images with 123I-labeled compound 21.7

18 Geiger-Müller Counter
21.7

19 Biological Effects of Radiation
Radiation absorbed dose (rad) 1 rad = 1 x 10-5 J/g of material Roentgen equivalent for man (rem) 1 rem = 1 rad x Q Quality Factor g-ray = 1 b = 1 a = 20 21.8

20 Chemistry In Action: Food Irradiation
Dosage Effect Up to 100 kilorad Inhibits sprouting of potatoes, onions, garlics. Inactivates trichinae in pork. Kills or prevents insects from reproducing in grains, fruits, and vegetables. 100 – 1000 kilorads Delays spoilage of meat poultry and fish. Reduces salmonella. Extends shelf life of some fruit. 1000 to 10,000 kilorads Sterilizes meat, poultry and fish. Kills insects and microorganisms in spices and seasoning.


Download ppt "Nuclear Chemistry Chapter 22."

Similar presentations


Ads by Google