Download presentation
Presentation is loading. Please wait.
1
Part I Finding Values for Trig Functions
Sin = opposite ÷ hypotenuse Cos = adjacent ÷ hypotenuse Tan = opposite ÷ adjacent Opposite Hypotenuse θ Adjacent Tim Glahn LCJVS Mathematics Dept.
2
θ 13 in 5 in 12 in Find cos <θ = Tim Glahn LCJVS Mathematics Dept.
3
θ 13 in 5 in 12 in Find sin <θ = Tim Glahn LCJVS Mathematics Dept.
4
θ 13 in 5 in 12 in Find tan <θ = Tim Glahn LCJVS Mathematics Dept.
5
Practice Tim Glahn LCJVS Mathematics Dept.
6
Remember……. θ Hypotenuse Opposite Adjacent
Tim Glahn LCJVS Mathematics Dept.
7
Find the sin <α 20 in 12in 15 in <β <α
Tim Glahn LCJVS Mathematics Dept.
8
Find the cos <β 13 in 12in 5 in <β <α
Tim Glahn LCJVS Mathematics Dept.
9
Find the sin <α 13 in 12in 5 in <β <α
Tim Glahn LCJVS Mathematics Dept.
10
Find the sin <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.
11
Find the tan <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
12
Find the tan <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.
13
Find the cos <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
14
Find the tan <β <β 17 in 16in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
15
Find the tan <β <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
16
Find the cos <α <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.
17
Find the cos <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
18
Find the sin <β <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
19
Find the tan <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
20
Find the tan <α <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.
21
Find the tan <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.
22
Find the sin <α 16in 5 in <β 17 in <α
Tim Glahn LCJVS Mathematics Dept.
23
Find the cos <β <β 17 in 16in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
24
Find the sin <β <β 17 in 16in <α 5 in
Tim Glahn LCJVS Mathematics Dept.
25
Find the cos <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.
26
Part II Finding Angles Using Trig Functions
Use the arc sin, arc cos, and arc tan functions to find angles. Sin-1 Cos-1 and Tan-1 are how they appear on your Calculator Any two sides can be used to find an angle measure. Tim Glahn LCJVS Mathematics Dept.
27
Which Arc Function Do I Use?
If you have opposite and hypotenuse use the arc sin or sin-1. If you have adjacent and hypotenuse use the arc cos or cos-1 If you have opposite and adjacent use the arc tan or tan-1 Tim Glahn LCJVS Mathematics Dept.
28
Finding an Angle Use Sin-1 θ = Sin-1(15/31) = 28º56’ 31 15 θ
hypotenuse 31 15 Opposite θ Use Sin-1 θ = Sin-1(15/31) = 28º56’ Tim Glahn LCJVS Mathematics Dept.
29
Use Cos-1 θ = Cos-1(22/31) = 44º 47’ 31 θ 22 hypotenuse Adjacent
Tim Glahn LCJVS Mathematics Dept.
30
Use Tan-1 θ = Tan-1(15/22) = 34º17’ 15 θ 22 Opposite Adjacent
Tim Glahn LCJVS Mathematics Dept.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.