Presentation is loading. Please wait.

Presentation is loading. Please wait.

Part I Finding Values for Trig Functions

Similar presentations


Presentation on theme: "Part I Finding Values for Trig Functions"— Presentation transcript:

1 Part I Finding Values for Trig Functions
Sin = opposite ÷ hypotenuse Cos = adjacent ÷ hypotenuse Tan = opposite ÷ adjacent Opposite Hypotenuse θ Adjacent Tim Glahn LCJVS Mathematics Dept.

2 θ 13 in 5 in 12 in Find cos <θ = Tim Glahn LCJVS Mathematics Dept.

3 θ 13 in 5 in 12 in Find sin <θ = Tim Glahn LCJVS Mathematics Dept.

4 θ 13 in 5 in 12 in Find tan <θ = Tim Glahn LCJVS Mathematics Dept.

5 Practice Tim Glahn LCJVS Mathematics Dept.

6 Remember……. θ Hypotenuse Opposite Adjacent
Tim Glahn LCJVS Mathematics Dept.

7 Find the sin <α 20 in 12in 15 in <β <α
Tim Glahn LCJVS Mathematics Dept.

8 Find the cos <β 13 in 12in 5 in <β <α
Tim Glahn LCJVS Mathematics Dept.

9 Find the sin <α 13 in 12in 5 in <β <α
Tim Glahn LCJVS Mathematics Dept.

10 Find the sin <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.

11 Find the tan <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

12 Find the tan <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.

13 Find the cos <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

14 Find the tan <β <β 17 in 16in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

15 Find the tan <β <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

16 Find the cos <α <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.

17 Find the cos <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

18 Find the sin <β <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

19 Find the tan <α <β 13 in 12in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

20 Find the tan <α <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.

21 Find the tan <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.

22 Find the sin <α 16in 5 in <β 17 in <α
Tim Glahn LCJVS Mathematics Dept.

23 Find the cos <β <β 17 in 16in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

24 Find the sin <β <β 17 in 16in <α 5 in
Tim Glahn LCJVS Mathematics Dept.

25 Find the cos <β <β 20 in 12in <α 15 in
Tim Glahn LCJVS Mathematics Dept.

26 Part II Finding Angles Using Trig Functions
Use the arc sin, arc cos, and arc tan functions to find angles. Sin-1 Cos-1 and Tan-1 are how they appear on your Calculator Any two sides can be used to find an angle measure. Tim Glahn LCJVS Mathematics Dept.

27 Which Arc Function Do I Use?
If you have opposite and hypotenuse use the arc sin or sin-1. If you have adjacent and hypotenuse use the arc cos or cos-1 If you have opposite and adjacent use the arc tan or tan-1 Tim Glahn LCJVS Mathematics Dept.

28 Finding an Angle Use Sin-1 θ = Sin-1(15/31) = 28º56’ 31 15 θ
hypotenuse 31 15 Opposite θ Use Sin-1 θ = Sin-1(15/31) = 28º56’ Tim Glahn LCJVS Mathematics Dept.

29 Use Cos-1 θ = Cos-1(22/31) = 44º 47’ 31 θ 22 hypotenuse Adjacent
Tim Glahn LCJVS Mathematics Dept.

30 Use Tan-1 θ = Tan-1(15/22) = 34º17’ 15 θ 22 Opposite Adjacent
Tim Glahn LCJVS Mathematics Dept.


Download ppt "Part I Finding Values for Trig Functions"

Similar presentations


Ads by Google