Presentation is loading. Please wait.

Presentation is loading. Please wait.

Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd.

Similar presentations


Presentation on theme: "Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd."— Presentation transcript:

1 Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd International Symposium on Molecular Spectroscopy Urbana, IL June 19-23, 2017 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

2 Introduction Fundamental characteristics of vibrational transitions:
Frequency Intensity  dependence of charge distribution on molecular coordinates !

3 Introduction CO2 containing molecules and complexes interesting for CO2 reduction  conversion of CO2 into chemical fuels  series of experiments on IR spectroscopy of anionic metal-CO clusters [M(CO2)n]- and related species CO stretching vibrations are important characteristic vibrations for molecules containing “CO oscillators” – fundamental information on  structure and symmetry  charge distribution and how it depends on molecular coordinates A.D. Boese et al., JCP 122 (2005) B.J. Knurr & JMW, JACS 134 (2012) 18804−18808 B.J. Knurr & JMW, J. Phys. Chem. A 117 (2013) 10764–10771 B.J. Knurr & JMW, J. Phys. Chem. A 118 (2014) 4056 – 4062 B.J. Knurr & JMW, J. Phys. Chem. A 118 (2014) B.J. Knurr & JMW, J. Phys. Chem. A, 118 (2014) B.J. Knurr & JMW, J. Phys. Chem. A, 119 (2015) 843–850 M.C. Thompson, J. Ramsay & JMW, Angew. Chem. Int. Ed., 55 (2016) M.C. Thompson, L.G. Dodson & JMW, J. Phys. Chem. A 121 (2017) M.C. Thompson & JMW, in preparation L.G. Dodson, M.C. Thompson & JMW, in preparation

4 Introduction Electronic Structure of CO2: Walsh Diagram
Antisymm. CO stretch IR active OCO bend IR active Symm. CO stretch IR inactive

5 Introduction In CO2 anions and COO- functional groups:
Excess electron in antibonding orbital  CO bonds are weakened  CO stretching frequencies shift to the red CO2- is bent symmetric CO stretching vibration becomes IR active

6 Note that OCO bond angles are similar!
Introduction Follow frequencies and intensities of symmetric and antisymmetric stretching vibrations in CO2- and COO- functional groups! CO HCOO AgCOO- BiCOO- Note that OCO bond angles are similar!

7 Experimental Method: IR Photodissociation
cluster + h hot cluster fragments CO2-·(CO2) CO2-·(CO2)6 + CO2 HCOO-·Ar HCOO- + Ar AgCOO-·(CO2) AgCOO-·(CO2)3 + CO2 BiCOO-·(CO2) BiCOO-·(CO2)2 + CO2 J.-W. Shin, N. Hammer, M. A. Johnson, H. Schneider, A. N. Gloess, JMW, J. Phys. Chem. A 109 (2005) 3146 B.J. Knurr & JMW, J. Phys. Chem. A 117 (2013) 10764–10771 M. C. Thompson, J. Ramsay, JMW, Angew. Chem. Int. Ed., 55 (2016)

8 Experimental Setup Nd:YAG IR-OPO/OPA electron gun 600 – 4500 cm-1
mJ / 5 ns IR-OPO/OPA mass gate power meter ion source

9 Experimental Spectra of M-COO-
CO2-·(CO2)7 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

10 Experimental Spectra of M-COO-
CO2-·(CO2)7 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

11 Experimental Spectra of M-COO-
CO2-·(CO2)7 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

12 Experimental Spectra of M-COO-
CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

13 Experimental Spectra of M-COO-
CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

14 Experimental Spectra of M-COO-
CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

15 Experimental Spectra of M-COO-
Symmetric and antisymmetric CO stretching modes (fundamental transitions) of target ions (and others) Intensity ratio Is/Ias changes drastically! CO2-·(CO2)7 HCOO-·Ar AgCOO-·(CO2)4 BiCOO-·(CO2)3 M.C. Thompson, J. M. Weber, Chem. Phys. Lett. 683 (2017) 586–590

16 Modeling the Spectra of M-COO-
Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = Fixed charge model – atomic charges qj are constant, only molecular geometry varies

17 Modeling the Spectra of M-COO-
Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = 1st term: fixed charge model – atomic charges qj are constant, only molecular geometry varies 2nd term: vibrationally mediated changes in charge distribution

18 Modeling the Spectra of M-COO-
Vibrationally mediated changes in charge distribution – charge oscillations Enhances transition dipole Considerable charge flow: q ≤ 0.2 e Symmetric stretching mode: binding partner acts as “charge reservoir” CO2-: no binding partner, only small intramolecular charge oscillations Antisymm. CO stretching mode: independent of binding partner q(COO-) [e] H Ag Bi

19 Modeling the Spectra of M-COO-
Vibrationally mediated changes in charge distribution – charge oscillations Previously found in other molecular systems: CH2X radicals (X = F, Cl; “charge sloshing”) E.S. Whitney, F. Dong, D.J. Nesbitt, J. Chem. Phys. 125 (2006) E.S. Whitney, T. Haeber, M.D. Schuder, A.C. Blair, D.J. Nesbitt, J. Chem. Phys. 125 (2006) [Cu·H2O]+ complexes P.D. Carnegie, A.B. McCoy, M.A. Duncan, J. Phys. Chem. A 113 (2009) 4849. H3O+·X3 complexes (X = Ar, N2, CH4, H2O) A.B. McCoy, T.L. Guasco, C.M. Leavitt, S.G. Olesen, M.A. Johnson, Phys. Chem. Chem. Phys. 14 (2012) 7205. X-·H2O (X = OH, O, F, Cl, and Br) complexes J.R. Roscioli, E.G. Diken, M.A. Johnson, S. Horvath, A.B. McCoy, J. Phys. Chem. A 110 (2006) 4943.

20 Modeling the Spectra of M-COO-
Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = 1st term: fixed charge model – atomic charges qj are constant, only molecular geometry varies 2nd term: vibrationally mediated changes in charge distribution increases with size of binding partner M and volume of M-C bond

21 Modeling the Spectra of M-COO-
Expand in transition dipole moment between levels and of normal mode Q in Taylor series to 1st order: = 1st term: fixed charge model – atomic charges qj are constant, only molecular geometry varies 2nd term: vibrationally mediated changes in charge distribution

22 Summary Intensity ratios between symmetric and antisymmetric CO stretching modes in M-COO- strongly depend on M Fixed charge model is insufficient to describe this behavior. Charge oscillations enhance transition dipole moments, effect varies strongly with M for symmetric CO stretch M acts as a charge reservoir that can dynamically accept charge during C-O bond contraction

23 Dramatis Personae Michael Thompson NSF AMO PFC

24 Thank you for your attention


Download ppt "Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd."

Similar presentations


Ads by Google