Download presentation
Presentation is loading. Please wait.
1
Lec 4. the inverse Laplace Transform
2
The Inverse Laplace Transform
Suppose F(s) has the general form of Finding inverse Laplace transform of F(s) involves two steps: Decompose F(s) into simple terms using partial fraction expansion. Find the inverse of each term by matching entries in Laplace Transform Table. πΉ(π = π(π )......numerator polynomial π·(π )...denominator polynomial 2
3
The Inverse Laplace Transform
Example 1 Find the inverse Laplace transform of Solution: πΉ(π = 3 π β 5 π π 2 +4 π(π‘) =πΏ β1 ξ 3 π ξ β πΏ β1 ξ 5 π +1 ξ +πΏ β1 ξ 6 π 2 +4 ξ 3β5 π βπ‘ +3sin(2t)π’(π‘),tβ₯0 3
4
Partial Fraction Expansion
Distinct Real Roots of D(s) πΉ(π = 96(π +5)(π +12 π (π +8)(π +6 s1= 0, s2= -8 s3= -6
5
1) Distinct Real Roots πΉ(π = 96(π +5)(π +12 π (π +8)(π +6 β‘ πΎ 1 π + πΎ 2 π +8 + πΎ 3 π +6 To find K1: multiply both sides by s and evaluates both sides at s=0 To find K2: multiply both sides by s+8 and evaluates both sides at s=-8 To find K3: multiply both sides by s+6 and evaluates both sides at s=-6
6
Find K1 96(π +5)(π +12 π +8)(π +6 β£ π =0 β‘ πΎ 1 + πΎ 2 π π +8 β£ π =0 + πΎ 3 π π +6 β£ π =0 β΄πΎ 1 = 96(5)(12 8)(6 =120
7
Find K2 96(π +5)(π +12 π (π +6 β£ π =β8 β‘ πΎ 1 (π +8 π (π +6 β£ π =β8 +πΎ πΎ 3 (π +8 π (π +6 β£ π =β8 β΄πΎ 2 = 96 β3 )(4 β8 ) β2 =β72
8
Find K3 96(π +5)(π +12 π (π +8 β£ π =β6 β‘ πΎ 1 (π +6 π (π +8 β£ π =β6 + πΎ 2 (π +6 π (π +8 β£ π =β6 + πΎ 3 β΄πΎ 3 = 96 β1 )(6 β6 )(2 =48
9
Inverse Laplace of F(s)
πΉ(π = 120 π β 72 π π +6 πΏ β π β 72 π π +6 π(π‘ = ξ120β72 π β8t +48 π β6t ξ π’(π‘)
10
Ex.
11
2) Distinct Complex Roots
S2 = -3+j4 S3 = -3-j4
12
Partial Fraction Expansion
Complex roots appears in conjugate pairs.
13
Find K1 πΎ 1 = 100(π +3 π 2 +6s+25 β£ π =β6 = 100 β =β12
14
Find K2 and K2* Coefficients associated with conjugate
πΎ 2 = 100(π +3 π +6)(π +3+π4 β£ π =β3+π4 = 100(π4 3+π4)(π8 =6βπ8=10 π βπ53.13Β° Coefficients associated with conjugate pairs are themselves conjugates. πΎ 2 =6+π8=10 π π53.13
15
Inverse Laplace of F(s)
16
Inverse Laplace of F(s)
πΏ β1 β12 π π βπ53.13Β° π +3βπ π π53.13Β° π +3+π4 = β12 π β6t +10 π βπ53.13Β° π β 3βπ4)π‘ +10 π π53.13Β° π β 3+π4)π‘ )π’(π‘)
17
Useful Transform Pairs
1) πΎ π +π β πΎπ βππ‘ π’(π‘ 2) πΎ π +π ) 2 β πΎπ‘π βππ‘ π’(π‘ 3) πΎ π +πΌβππ½ + πΎ π +πΌ+ππ½ β2β£πΎβ£ π βπΌπ‘ cos(π½π‘+π)π’(π‘ 4) πΎ π +πΌβππ½ ) πΎ π +πΌ+ππ½ ) 2 β2tβ£πΎβ£ π βπΌπ‘ cos(π½π‘+π)π’(π‘
18
Ex.
19
Operational Transform
20
Operational Transforms
Indicate how mathematical operations performed on either f(t) or F(s) are converted into the opposite domain. The operations of primary interest are: Multiplying by a constant Addition/subtraction Differentiation Integration Translation in the time domain Translation in the frequency domain Scale changing
21
Multiplication by a constant
OPERATION f(t) F(s) Multiplication by a constant Addition/Subtra ction First derivative (time) Second derivative (time) πΎπ(π‘ πΎπΉ(π π 1 (π‘) +π 2 (π‘ β π 3 (π‘ +β― πΉ 1 (π ) +πΉ 2 (π β πΉ 3 (π +β― ππ(π‘)ππ‘ π πΉ(π βπ ( 0 β π 2 (π‘) ππ‘ 2 π 2 πΉ(π βπ π ( 0 β βππ ( 0 β )ππ‘
22
Translation in frequency
OPERATION f(t) F(s) n th derivative (time) Time integral Translation in time Translation in frequency π π πΉ(π β π πβ1 π( 0 β β π πβ2 ππ( 0 β )ππ‘ β π πβ3 ππ 2 ( 0 β )ππ‘ββ―β ππ πβ1 ( 0 β ) ππ‘ πβ1 π π (π‘) ππ‘ π 0 π‘ π(π₯)ππ₯ πΉ(π )π π(π‘βπ)π’(π‘βπ), π>0 π βππ πΉ(π π βππ‘ π(π‘ πΉ(π +π
23
OPERATION f(t) F(s) Scale changing First derivative (s)
n th derivative s integral 1ππΉ ξπ πξ π(ππ‘),π>0 π‘π(π‘ βππΉ(π )ππ π‘ π π(π‘ β1 ) π π π πΉ(π ) ππ π π β πΉ(π’)ππ’ π(π‘)π‘
24
Translation in time domain
If we start with any function: we can represent the same function translated in time by the constant a, as: In frequency domain: π(π‘)π’(π‘ π(π‘βπ)π’(π‘βπ π(π‘βπ)π’(π‘βπ) =π βππ πΉ(π
25
Ex: πΏ π‘π’(π‘ = 1s 2 πΏ π‘βπ)π’(π‘βπ =π βππ π 2
26
Translation in frequency domain
Translation in the frequency domain is defined as: πΏ π βππ‘ π(π‘ =πΉ(π +π
27
Ex: πΏ cosππ‘ = π π 2 +π 2 πΏ π βππ‘ cosππ‘ = π +π π +π ) 2 +π 2
28
Ex: πΏ cosπ‘ = π π 2 +1 πΏ cosππ‘ = 1 π π π π π ) = π π 2 +π 2
29
APPLICATION
30
Problem Assumed no initial energy is stored in the circuit at the instant when the switch is opened. Find the time domain expression for v(t) when tβ₯0.
31
Integrodifferential Equation
A single node voltage equation: πlg πΌ ππ =πlg πΌ ππ’π‘ βπΎπΆπΏ π£(π‘ π
+ 1 πΏ 0 π‘ π£(π‘ ππ‘+πΆ ππ£(π‘ ππ‘ =πΌ ππ π’(π‘)
32
s-domain transformation
π£(π‘ π
+ 1 πΏ 0 π‘ π£(π₯ ππ₯+πΆ ππ£(π‘ ππ‘ =πΌ ππ π’(π‘ =0 π(π ) ξ 1 π
+ 1 π πΏ +π πΆξ = πΌ ππ π
33
π(π = πΌ ππ πΆ π π
πΆ )π +( 1 πΏπΆ π£(π‘) =πΏ β1 π(π
34
Ex Obtain the Laplace transform for the function below: 1 2 3 t h(t) 4
1 2 3 t h(t) 4 5
35
Find the expression of f(t):
Expression for the ramp function with slope, m =2 and period, T=2: For a periodic ramp function, we can write: π 1 (π‘ =2t π 1 (π‘ =2t π’(π‘ βπ’ (π‘β1
36
Different time occurred:
Expanding: π 1 (π‘ =2t π’(π‘ βπ’ (π‘β1 =2π‘π’(π‘ β2 π‘π’(π‘β1) Different time occurred: t=0 and t=1
37
Equal time shift: π 1 (π‘ =2t π’(π‘ βπ’ (π‘β1 =2π‘π’(π‘ β2 π‘π’(π‘β1) =2π‘π’(π‘ β2 (π‘β1+1)π’(π‘β1) π 1 (π‘ =2 π‘π’(π‘ β2 (π‘β1)π’(π‘β1 β2u (π‘β1)
38
Inverse Laplace using translation in time property:
39
Time periodicity property:
π(π‘)=π(π‘+ππ)βπΉ(π = πΉ 1 (π 1β π βππ πΉ(π = πΉ 1 (π 1β π βππ = 2 π 2 (1β π β2s 1β π βπ β π π βπ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.