Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lec 4. the inverse Laplace Transform

Similar presentations


Presentation on theme: "Lec 4. the inverse Laplace Transform"β€” Presentation transcript:

1 Lec 4. the inverse Laplace Transform

2 The Inverse Laplace Transform
Suppose F(s) has the general form of Finding inverse Laplace transform of F(s) involves two steps: Decompose F(s) into simple terms using partial fraction expansion. Find the inverse of each term by matching entries in Laplace Transform Table. 𝐹(𝑠 = 𝑁(𝑠)......numerator polynomial 𝐷(𝑠)...denominator polynomial 2

3 The Inverse Laplace Transform
Example 1 Find the inverse Laplace transform of Solution: 𝐹(𝑠 = 3 𝑠 βˆ’ 5 𝑠 𝑠 2 +4 𝑓(𝑑) =𝐿 βˆ’1 ξ‚ž 3 𝑠 ξ‚Ÿ βˆ’ 𝐿 βˆ’1 ξ‚ž 5 𝑠+1 ξ‚Ÿ +𝐿 βˆ’1 ξ‚ž 6 𝑠 2 +4 ξ‚Ÿ 3βˆ’5 𝑒 βˆ’π‘‘ +3sin(2t)𝑒(𝑑),tβ‰₯0 3

4 Partial Fraction Expansion
Distinct Real Roots of D(s) 𝐹(𝑠 = 96(𝑠+5)(𝑠+12 𝑠(𝑠+8)(𝑠+6 s1= 0, s2= -8 s3= -6

5 1) Distinct Real Roots 𝐹(𝑠 = 96(𝑠+5)(𝑠+12 𝑠(𝑠+8)(𝑠+6 ≑ 𝐾 1 𝑠 + 𝐾 2 𝑠+8 + 𝐾 3 𝑠+6 To find K1: multiply both sides by s and evaluates both sides at s=0 To find K2: multiply both sides by s+8 and evaluates both sides at s=-8 To find K3: multiply both sides by s+6 and evaluates both sides at s=-6

6 Find K1 96(𝑠+5)(𝑠+12 𝑠+8)(𝑠+6 ∣ 𝑠=0 ≑ 𝐾 1 + 𝐾 2 𝑠 𝑠+8 ∣ 𝑠=0 + 𝐾 3 𝑠 𝑠+6 ∣ 𝑠=0 ∴𝐾 1 = 96(5)(12 8)(6 =120

7 Find K2 96(𝑠+5)(𝑠+12 𝑠(𝑠+6 ∣ 𝑠=βˆ’8 ≑ 𝐾 1 (𝑠+8 𝑠(𝑠+6 ∣ 𝑠=βˆ’8 +𝐾 𝐾 3 (𝑠+8 𝑠(𝑠+6 ∣ 𝑠=βˆ’8 ∴𝐾 2 = 96 βˆ’3 )(4 βˆ’8 ) βˆ’2 =βˆ’72

8 Find K3 96(𝑠+5)(𝑠+12 𝑠(𝑠+8 ∣ 𝑠=βˆ’6 ≑ 𝐾 1 (𝑠+6 𝑠(𝑠+8 ∣ 𝑠=βˆ’6 + 𝐾 2 (𝑠+6 𝑠(𝑠+8 ∣ 𝑠=βˆ’6 + 𝐾 3 ∴𝐾 3 = 96 βˆ’1 )(6 βˆ’6 )(2 =48

9 Inverse Laplace of F(s)
𝐹(𝑠 = 120 𝑠 βˆ’ 72 𝑠 𝑠+6 𝐿 βˆ’ 𝑠 βˆ’ 72 𝑠 𝑠+6 𝑓(𝑑 = ξ‚ž120βˆ’72 𝑒 βˆ’8t +48 𝑒 βˆ’6t ξ‚Ÿ 𝑒(𝑑)

10 Ex.

11 2) Distinct Complex Roots
S2 = -3+j4 S3 = -3-j4

12 Partial Fraction Expansion
Complex roots appears in conjugate pairs.

13 Find K1 𝐾 1 = 100(𝑠+3 𝑠 2 +6s+25 ∣ 𝑠=βˆ’6 = 100 βˆ’ =βˆ’12

14 Find K2 and K2* Coefficients associated with conjugate
𝐾 2 = 100(𝑠+3 𝑠+6)(𝑠+3+𝑗4 ∣ 𝑠=βˆ’3+𝑗4 = 100(𝑗4 3+𝑗4)(𝑗8 =6βˆ’π‘—8=10 𝑒 βˆ’π‘—53.13Β° Coefficients associated with conjugate pairs are themselves conjugates. 𝐾 2 =6+𝑗8=10 𝑒 𝑗53.13

15 Inverse Laplace of F(s)

16 Inverse Laplace of F(s)
𝐿 βˆ’1 βˆ’12 𝑠 𝑒 βˆ’π‘—53.13Β° 𝑠+3βˆ’π‘— 𝑒 𝑗53.13Β° 𝑠+3+𝑗4 = βˆ’12 𝑒 βˆ’6t +10 𝑒 βˆ’π‘—53.13Β° 𝑒 βˆ’ 3βˆ’π‘—4)𝑑 +10 𝑒 𝑗53.13Β° 𝑒 βˆ’ 3+𝑗4)𝑑 )𝑒(𝑑)

17 Useful Transform Pairs
1) 𝐾 𝑠+π‘Ž ⇔ 𝐾𝑒 βˆ’π‘Žπ‘‘ 𝑒(𝑑 2) 𝐾 𝑠+π‘Ž ) 2 ⇔ 𝐾𝑑𝑒 βˆ’π‘Žπ‘‘ 𝑒(𝑑 3) 𝐾 𝑠+π›Όβˆ’π‘—π›½ + 𝐾 𝑠+𝛼+𝑗𝛽 ⇔2∣𝐾∣ 𝑒 βˆ’π›Όπ‘‘ cos(𝛽𝑑+πœƒ)𝑒(𝑑 4) 𝐾 𝑠+π›Όβˆ’π‘—π›½ ) 𝐾 𝑠+𝛼+𝑗𝛽 ) 2 ⇔2t∣𝐾∣ 𝑒 βˆ’π›Όπ‘‘ cos(𝛽𝑑+πœƒ)𝑒(𝑑

18 Ex.

19 Operational Transform

20 Operational Transforms
Indicate how mathematical operations performed on either f(t) or F(s) are converted into the opposite domain. The operations of primary interest are: Multiplying by a constant Addition/subtraction Differentiation Integration Translation in the time domain Translation in the frequency domain Scale changing

21 Multiplication by a constant
OPERATION f(t) F(s) Multiplication by a constant Addition/Subtra ction First derivative (time) Second derivative (time) 𝐾𝑓(𝑑 𝐾𝐹(𝑠 𝑓 1 (𝑑) +𝑓 2 (𝑑 βˆ’ 𝑓 3 (𝑑 +β‹― 𝐹 1 (𝑠) +𝐹 2 (𝑠 βˆ’ 𝐹 3 (𝑠 +β‹― 𝑑𝑓(𝑑)𝑑𝑑 𝑠𝐹(𝑠 βˆ’π‘“ ( 0 βˆ’ 𝑑 2 (𝑑) 𝑑𝑑 2 𝑠 2 𝐹(𝑠 βˆ’π‘ π‘“ ( 0 βˆ’ βˆ’π‘‘π‘“ ( 0 βˆ’ )𝑑𝑑

22 Translation in frequency
OPERATION f(t) F(s) n th derivative (time) Time integral Translation in time Translation in frequency 𝑠 𝑛 𝐹(𝑠 βˆ’ 𝑠 π‘›βˆ’1 𝑓( 0 βˆ’ βˆ’ 𝑠 π‘›βˆ’2 𝑑𝑓( 0 βˆ’ )𝑑𝑑 βˆ’ 𝑠 π‘›βˆ’3 𝑑𝑓 2 ( 0 βˆ’ )π‘‘π‘‘βˆ’β‹―βˆ’ 𝑑𝑓 π‘›βˆ’1 ( 0 βˆ’ ) 𝑑𝑑 π‘›βˆ’1 𝑑 𝑛 (𝑑) 𝑑𝑑 𝑛 0 𝑑 𝑓(π‘₯)𝑑π‘₯ 𝐹(𝑠)𝑠 𝑓(π‘‘βˆ’π‘Ž)𝑒(π‘‘βˆ’π‘Ž), π‘Ž>0 𝑒 βˆ’π‘Žπ‘  𝐹(𝑠 𝑒 βˆ’π‘Žπ‘‘ 𝑓(𝑑 𝐹(𝑠+π‘Ž

23 OPERATION f(t) F(s) Scale changing First derivative (s)
n th derivative s integral 1π‘ŽπΉ ξ‚žπ‘ π‘Žξ‚Ÿ 𝑓(π‘Žπ‘‘),π‘Ž>0 𝑑𝑓(𝑑 βˆ’π‘‘πΉ(𝑠)𝑑𝑠 𝑑 𝑛 𝑓(𝑑 βˆ’1 ) 𝑛 𝑑 𝑛 𝐹(𝑠) 𝑑𝑠 𝑛 𝑠 ∞ 𝐹(𝑒)𝑑𝑒 𝑓(𝑑)𝑑

24 Translation in time domain
If we start with any function: we can represent the same function translated in time by the constant a, as: In frequency domain: 𝑓(𝑑)𝑒(𝑑 𝑓(π‘‘βˆ’π‘Ž)𝑒(π‘‘βˆ’π‘Ž 𝑓(π‘‘βˆ’π‘Ž)𝑒(π‘‘βˆ’π‘Ž) =𝑒 βˆ’π‘Žπ‘  𝐹(𝑠

25 Ex: 𝐿 𝑑𝑒(𝑑 = 1s 2 𝐿 π‘‘βˆ’π‘Ž)𝑒(π‘‘βˆ’π‘Ž =𝑒 βˆ’π‘Žπ‘  𝑠 2

26 Translation in frequency domain
Translation in the frequency domain is defined as: 𝐿 𝑒 βˆ’π‘Žπ‘‘ 𝑓(𝑑 =𝐹(𝑠+π‘Ž

27 Ex: 𝐿 cosπœ”π‘‘ = 𝑠 𝑠 2 +πœ” 2 𝐿 𝑒 βˆ’π‘Žπ‘‘ cosπœ”π‘‘ = 𝑠+π‘Ž 𝑠+π‘Ž ) 2 +πœ” 2

28 Ex: 𝐿 cos𝑑 = 𝑠 𝑠 2 +1 𝐿 cosπœ”π‘‘ = 1 πœ” 𝑠 πœ” 𝑠 πœ” ) = 𝑠 𝑠 2 +πœ” 2

29 APPLICATION

30 Problem Assumed no initial energy is stored in the circuit at the instant when the switch is opened. Find the time domain expression for v(t) when tβ‰₯0.

31 Integrodifferential Equation
A single node voltage equation: π‘Žlg 𝐼 𝑖𝑛 =π‘Žlg 𝐼 π‘œπ‘’π‘‘ ⇒𝐾𝐢𝐿 𝑣(𝑑 𝑅 + 1 𝐿 0 𝑑 𝑣(𝑑 𝑑𝑑+𝐢 𝑑𝑣(𝑑 𝑑𝑑 =𝐼 𝑑𝑐 𝑒(𝑑)

32 s-domain transformation
𝑣(𝑑 𝑅 + 1 𝐿 0 𝑑 𝑣(π‘₯ 𝑑π‘₯+𝐢 𝑑𝑣(𝑑 𝑑𝑑 =𝐼 𝑑𝑐 𝑒(𝑑 =0 𝑉(𝑠) ξ‚ž 1 𝑅 + 1 𝑠𝐿 +π‘ πΆξ‚Ÿ = 𝐼 𝑑𝑐 𝑠

33 𝑉(𝑠 = 𝐼 𝑑𝑐 𝐢 𝑠 𝑅𝐢 )𝑠+( 1 𝐿𝐢 𝑣(𝑑) =𝐿 βˆ’1 𝑉(𝑠

34 Ex Obtain the Laplace transform for the function below: 1 2 3 t h(t) 4
1 2 3 t h(t) 4 5

35 Find the expression of f(t):
Expression for the ramp function with slope, m =2 and period, T=2: For a periodic ramp function, we can write: 𝑓 1 (𝑑 =2t 𝑓 1 (𝑑 =2t 𝑒(𝑑 βˆ’π‘’ (π‘‘βˆ’1

36 Different time occurred:
Expanding: 𝑓 1 (𝑑 =2t 𝑒(𝑑 βˆ’π‘’ (π‘‘βˆ’1 =2𝑑𝑒(𝑑 βˆ’2 𝑑𝑒(π‘‘βˆ’1) Different time occurred: t=0 and t=1

37 Equal time shift: 𝑓 1 (𝑑 =2t 𝑒(𝑑 βˆ’π‘’ (π‘‘βˆ’1 =2𝑑𝑒(𝑑 βˆ’2 𝑑𝑒(π‘‘βˆ’1) =2𝑑𝑒(𝑑 βˆ’2 (π‘‘βˆ’1+1)𝑒(π‘‘βˆ’1) 𝑓 1 (𝑑 =2 𝑑𝑒(𝑑 βˆ’2 (π‘‘βˆ’1)𝑒(π‘‘βˆ’1 βˆ’2u (π‘‘βˆ’1)

38 Inverse Laplace using translation in time property:

39 Time periodicity property:
𝑓(𝑑)=𝑓(𝑑+𝑛𝑇)⇔𝐹(𝑠 = 𝐹 1 (𝑠 1βˆ’ 𝑒 βˆ’π‘‡π‘  𝐹(𝑠 = 𝐹 1 (𝑠 1βˆ’ 𝑒 βˆ’π‘‡π‘  = 2 𝑠 2 (1βˆ’ 𝑒 βˆ’2s 1βˆ’ 𝑒 βˆ’π‘  βˆ’ 𝑠𝑒 βˆ’π‘ 


Download ppt "Lec 4. the inverse Laplace Transform"

Similar presentations


Ads by Google