Presentation is loading. Please wait.

Presentation is loading. Please wait.

Elementary Data Structures

Similar presentations


Presentation on theme: "Elementary Data Structures"— Presentation transcript:

1 Elementary Data Structures
CS 105

2 Elementary Data Structures
Stack container of elements that are inserted and removed last-in first-out (LIFO) Queue container of elements that are inserted and removed first-in first-out (FIFO) Deque (double-ended queue) container of elements that allows insertion and removal from either end

3 Stack Last-in, First-out (LIFO) structure Operations Sample uses
push: add element into the stack pop: remove & return topmost element top: return topmost element isEmpty: check if the stack has no elements size: return number of elements in the stack Sample uses “Back” button of a browser, “Undo” operation, function/method calls

4 Stack Interface public interface Stack { public int size();
public boolean isEmpty(); public void push( Object o ); public Object top() throws EmptyStackException; public Object pop() throws EmptyStackException; } public class EmptyStackException extends RuntimeException

5 Array Implementation top 3 S ... x z y w
public class ArrayStack implements Stack { private int top = -1; private Object S[]; ... } top 3 S ... x z y w

6 Array Implementation Details
An array of objects stores the elements An integer field points to the topmost element Value of top is –1 when the stack is empty A constant indicates the size/capacity of the array Throw a StackFullException when a push is attempted on a full array

7 ArrayStack class public class ArrayStack implements Stack {
public static final int CAPACITY = 1000; private Object S[]; private int top; public ArrayStack() S = new Object[CAPACITY]; top = -1; } public boolean isEmpty() return (top < 0); } …

8 ArrayStack class continued
public class ArrayStack implements Stack { … public int size() { return (top + 1); } public void push(Object obj) throws FullStackException if (size() == CAPACITY) throw new FullStackException(); S[++top] = obj; public class FullStackException extends RuntimeException { }

9 ArrayStack class continued
public class ArrayStack implements Stack { … public Object top() throws EmptyStackException { if (isEmpty()) throw new EmptyStackException(); return S[top]; } public Object pop() throws EmptyStackException return S[top--]; } …

10 Garbage collection After a pop() operation, array still contains reference to popped element Succeeding push() operations will override such references but it is not certain whether pushes will occur after the pops Better to set the reference to null so that the object is garbage-collected when no longer in use

11 Improved pop() method public class ArrayStack implements Stack { …
public Object pop() throws EmptyStackException { Object elem; if (isEmpty()) throw new EmptyStackException(); elem = S[top]; S[top--] = null; // dereference S[top] for garbage collection. return elem; }

12 Using the Stack Stack s1 = new ArrayStack(); String temp;
s1.push( "easy" ); s1.push( "this" ); temp = (String) s1.pop(); System.out.print( temp ); s1.push( "is" ); s1.push( "class" ); while ( !s1.isEmpty() ) { System.out.print( " "+ temp ); } System.out.println(); OK because Strings are Objects Cast object to String

13 Stack of ints Stack s2 = new ArrayStack(); s2.push( 5 ); s2.push( 2 );
int num = (Integer) s2.pop(); System.out.println( num ); Allowed in Java 1.5 because primitive type values are “auto-boxed” Cast object to Integer type (not int) Note: In previous Java versions, s2.push( new Integer( 2 ) ); num = ( (Integer) s2.pop() ).intValue();

14 Time Complexity Analysis
push() : O(1) pop() : O(1) isEmpty() : O(1) size() : O(1) top(): O(1)

15 Array Implementation Alternative
Make top variable point to next available array position instead of actual topmost element top = 0 when empty top represents size top 4 S ... x z y w

16 Problems with ArrayStack
CAPACITY needs to be specified Consequences stack may fill up (when size() == MAX ) memory is wasted if actual stack consumption is way below maximum Need a more “dynamic” implementation

17 Linked List Implementation
top null y w z A stack as a sequence of nodes

18 The Node class y public class Node { private Object element;
private Node next; public Node( Object e, Node n ) element = e; next = n; } public Object getElement() … public Node getNext() … public void setElement( Object newElem ) … public void setNext( Node newNext ) … y

19 Linked List Implementation
Stack is represented by a Node reference (called top) This reference is null when stack is empty Top refers to the top element only but links in each node keep the elements together An integer field represents the number of elements in the stack

20 NodeStack class public class NodeStack implements Stack {
private Node top; private int size; public NodeStack() top = null; size = 0; } public boolean isEmpty() return (top == null); } …

21 NodeStack class continued
public class NodeStack implements Stack { … public int size() { return size; } public void push( Object obj ) Node v = new Node( obj, top ); top = v; size++;

22 Push operation top size 3 null y w z

23 Push operation top size 3 null x y w z Create node

24 Push operation top size 4 null x y w z Update top and size

25 NodeStack class continued
public class NodeStack implements Stack { … public Object top() throws EmptyStackException { if ( isEmpty() ) throw new EmptyStackException(); return top.getElement(); } public Object pop() throws EmptyStackException Object temp = top.getElement(); top = top.getNext(); size--; return temp; } …

26 Pop operation top size 4 null x y w z

27 Pop operation top size 4 null x y w z temp Get top element

28 Pop operation top size 3 null x y w z temp Update top and size

29 Pop operation top size 3 null x y w z temp Node automatically disposed

30 Pop operation top size 3 null x y w z Return element

31 Using the NodeStack Stack s2 = new NodeStack(); s2.push( 5 );
int num = (Integer) s2.pop(); System.out.println( num ); Only this line changed

32 Time Complexity Analysis
push() : O(1) pop() : O(1) isEmpty() : O(1) size() : O(1) top(): O(1)

33 ArrayStack versus NodeStack
NodeStack uses only the memory that it needs at any given time NodeStack has no size limit (just the system’s memory) – FullStackException not thrown ArrayStack’s implementation is simpler Which implementation is more efficient?

34 Managing Multiple Implementations
Note that we now have two implementations of a Stack: public class ArrayStack implements Stack { … } public class NodeStack implements Stack Consider what code needs to be changed if we shift between implementations It would be preferable if the code that uses the stack does not need to be updated

35 A StackFactory Class Use a separate class that produces Stack objects
public class StackFactory { public static Stack createStack() return new ArrayStack(); // or return new NodeStack(); } Advantage: if you want to change your implementation, you just need to change StackFactory you don’t need to change all calls to new ArrayStack in all your code!

36 Using a StackFactory Stack s2 = StackFactory.createStack();
s2.push( 5 ); s2.push( 2 ); s2.push( 3 ); int num = (Integer) s2.pop(); System.out.println( num ); this line need not be changed even if the stack implementation changes

37 Queue First-in, First-out (FIFO) structure Operations Sample use
enqueue: insert element at rear dequeue: remove & return front element front: return front element isEmpty: check if the queue has no elements size: return number of elements in the queue Sample use handling requests and reservations

38 The Queue Interface public interface Queue { public int size();
public boolean isEmpty(); public void enqueue( Object o ); public Object front() throws EmptyQueueException; public Object dequeue() throws EmptyQueueException; } public class EmptyQueueException extends RuntimeException

39 Array Implementation Possibilities
On enqueue, place element in the next available slot; on dequeue, remove element at position 0 and move all other elements to the left Dequeue takes O(n) time Have integer pointers to front and rear, increment rear on enqueue, increment front on dequeue, so that both operations are O(1)

40 Array Implementation of a Queue
An Object array and two integers front: index of first element in queue rear: index of first FREE element in queue rear front 4 ...

41 ArrayQueue public class ArrayQueue implements Queue {
public static final int CAPACITY = 1000; private Object s[]; private int front, rear; public ArrayQueue() s = new Object[CAPACITY]; front = rear = 0; } ...

42 isEmpty and Enqueue public class ArrayQueue implements Queue { ...
{ ... public boolean isEmpty() { return ( front == rear ); } public void enqueue( Object o ) throws FullQueueException if ( rear == CAPACITY ) throw new FullQueueException(); s[rear++] = o; ... public class FullQueueException extends RuntimeException { }

43 Enqueue operation front rear 3 ...

44 Enqueue operation front rear 4 ... Enqueued object

45 Dequeue public class ArrayQueue implements Queue { ...
public Object dequeue() throws EmptyQueueException if ( isEmpty() ) throw new EmptyQueueException(); return s[front++]; }

46 Dequeue operation front rear 4 ...

47 Dequeue operation front rear 1 4 ... Return this object

48 Dequeue operation front rear 1 4 ...
Remember to set reference in array to null front rear 1 4 ... null

49 Dequeue with Garbage Collection
public class ArrayQueue implements Queue { ... public Object dequeue() throws EmptyQueueException { if ( isEmpty() ) throw new EmptyQueueException(); Object data = s[front]; s[front] = null; front++; return data; }

50 Circular Array Suppose many enqueue operations followed by many dequeue operations Result: rear approaches CAPACITY but the queue is not really full Solution: Circular Array allow rear (and front) to “wrap around” the array (if rear = CAPACITY-1, incrementing rear means resetting it to 0)

51 Circular Array, continued
When is the array full? Simple answer: when (rear == front) Problem: this is the same condition as empty Solution: Reserve a slot full: when ( (rear+1) % CAPACITY == front) (one free slot left) empty: when ( rear == front ) Note: “wastes” a slot alternative: have a boolean field called hasElements full: when ( hasElements && (rear == front)) But not really better hasElements takes up extra space too Also, need to take care of hasElements in enqueue and dequeue

52 Revised Enqueue public class ArrayQueue implements Queue { ...
public void enqueue( Object o ) throws FullQueueException if ((rear+1) % CAPACITY == front) throw new FullQueueException(); s[rear] = o; rear = (rear + 1) % CAPACITY; }

53 Revised Dequeue public class ArrayQueue implements Queue { ...
{ ... public Object dequeue() throws EmptyQueueException { if ( isEmpty() ) throw new EmptyQueueException(); Object data = s[front]; s[front] = null; front = (front + 1) % CAPACITY; return data; }

54 Completing the Dequeue class
public class ArrayQueue implements Queue { ... public int size() { return (CAPACITY + rear – front) % CAPACITY; } public Object front() throws EmptyQueueException if ( isEmpty() ) throw new EmptyQueueException(); return s[front];

55 Time Complexity Analysis
enqueue() : O(1) dequeue() : O(1) isEmpty() : O(1) size() : O(1) front(): O(1)

56 Dynamic Implementation
Queue is represented by a linked sequence of nodes Two node references refer to front and rear element, respectively Use a size field to monitor number of elements

57 Linked List Implementation
public class NodeQueue implements Queue { private Node front; private Node rear; private int size; } front rear null

58 Enqueue front rear null null

59 Dequeue front rear null return this object

60 NodeQueue considerations
Exercise: complete the NodeQueue class Note that the queue is empty when both front and rear are null Need to watch out for special cases Enqueue from an empty queue Dequeue from a single-element queue

61 Deque Data structure that allows insertion and deletion from either end of structure Operations insertFirst, insertLast: add element removeFirst, removeLast: remove element first: return first element last: return last element isEmpty: check if the deque has no elements size: return number of elements in the deque

62 Deque Interface public interface Deque { public int size();
public boolean isEmpty(); public void insertFirst( Object o ); public void insertLast( Object o ); public Object first() throws EmptyDequeException; public Object last() throws EmptyDequeException; public Object removeFirst() throws EmptyDequeException; public Object removeLast() throws EmptyDequeException; } public class EmptyDequeException extends RuntimeException

63 Array Implementation of a Deque
Circular array implementation Integer pointers to first and last element Insertion/removal operations insertFirst: decrement first pointer removeFirst: increment first pointer insertLast: increment last pointer removeFirst: decrement last pointer Decide whether pointers should point to actual element or next available space Impacts on full/empty conditions

64 Dynamic Implementation of a Deque
Linked List implementation first last null

65 Deque using a Singly Linked List
insertFirst, removeFirst, insertLast are O(1) operations removeLast is an O(n) operation Why? Need to update last pointer to point to second-to-the-last element How can we make all operations O(1)? Have a link to next and previous nodes

66 Doubly Linked List first last null null

67 The DLNode class public class DLNode { private Object element;
private DLNode next, prev; public Node( Object e, DLNode n, DLNode p ) element = e; next = n; prev = p; } public Object getElement() … public DLNode getNext() … public DLNode getPrev() … public void setElement( Object newElem ) … public void setNext( DLNode newNext ) … public void setPrev( DLNode newPrev ) …

68 Deque using a Doubly Linked List
insertFirst, removeFirst, insertLast, removeLast are O(1) operations Need to update next and prev pointers in DLNode Empty and single-element cases Insertion from the empty case (both pointers are null) and removal from a single-element case (both point to the single element) need to be handled Or, make pointers point to dummy nodes (also called sentinels), so that insertion and removal need not worry about the special cases size field: as in singly-linked implementation, storing size makes isEmpty() and size() easier


Download ppt "Elementary Data Structures"

Similar presentations


Ads by Google