Presentation is loading. Please wait.

Presentation is loading. Please wait.

10th Winter Symposium on Chemometrics

Similar presentations


Presentation on theme: "10th Winter Symposium on Chemometrics"— Presentation transcript:

1 10th Winter Symposium on Chemometrics
29 February 2016 Samara, Russia Hybrid chemometric approaches to increase efficiency of classification and data fusion techniques Yulia B. Monakhova, Monika Hohmann, Svetlana P. Mushtakova, Norbert Christoph, Helmut Wachter, Bernd Diehl, Ulrike Holzgrabe, Douglas N. Rutledge Institute of Chemistry, Saratov State University, Saratov, Russia Spectral Service AG, Cologne, Germany Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany Bavarian Health and Food Safety Authority, Würzburg, Germany UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, France

2 linear classfication models???
Introduction How can we cope with cluster overlap in linear classfication models??? By using synergetic combination of existing multivariate approaches

3 ICA + DA Problem statement Variable reduction is necessary for DA PCA is a routine tool for dimention reduction Is ICA an alternative for the DA preprocessing?

4 5 groups: MSR, PFL, RHH, Sac, Wue
ICA + DA NMR wine data set Data set Classified parameter 1 Riesling (n=334) Year 5 groups: 2005, 2006, 2007, 2009, 2010 2 Riesling (n=217) Origin 5 groups: MSR, PFL, RHH, Sac, Wue 3 2009 (n=111) 4 groups: PFL, NAH, MSR, RHH 4 Red wine (n=303) Grape variety 6 groups: Pinot noir, Dornfelder, Lemberger, Portugieser, Trollinger, Regent

5 ICA + DA Number of PCs/ICs

6 ICA + DA Number of PCs/ICs

7 ICA + DA Number of PCs/ICs Data matrix Classified parameter FDA LDA
Data matrix Classified parameter FDA LDA PCA ICA 1 Riesling (n=334) Year 10 7 8 6 2 Riesling (n=217) Origin 12 3 2009 (n=111) 9 4 Red wine (n=303) Grape variety 15 13

8 Number of samples for validation
ICA + DA Classification results Data matrix Classified parameter Number of samples for validation FDA LDA PCA ICA Riesling (n=334) Year 56 70 75 84 90 Riesling (n=217) Origin 36 69 89 95 2009 (n=111) 22 76 85 87 92 Red wine (n=303) Grape variety 61 43 46 79

9 Sum of ranking difference
ICA + DA Sum of ranking difference Ref.: K. Heberger, Sum of ranking differences compares methods or models fairly. Trends Anal. Chem. 29 (2010)

10 Classification results
ICA + DA Classification results PCA-FDA ICA-FDA

11 Common components and specific weights analysis (CCSWA) Better
CCSWA + PLS-DA Problem statement PLS-DA Common components and specific weights analysis (CCSWA) Better classification???

12 CCSWA + PLS-DA Algorithm Global scores calculation
PLS-DA on global scores 1-Latent Variable PLS regression between WG matrix and binary-coded groups matrix PCA decomposition of the WG matrix

13 CCSWA + PLS-DA Normally fruited tomatoes CCSWA Wilks' lambda = 0.14
PLSDA-CCSWA Wilks' lambda = 0.05

14 CCSWA + PLS-DA Small fruited tomatoes MB hierarchical PLS CCSWA
Wilks' lambda = 0.13 CCSWA Wilks' lambda=0.11 PLSDA-CCSWA Wilks' lambda = 0.05

15 CCSWA + PLS-DA Preprocessing

16 CCSWA + PLS-DA Number of LVs and CCs CCSWA CCs=11 / LVs=2 PLSDA-CCSWA CCs=5-12 / LVs=1-2

17 CCSWA + PLS-DA Prediction

18 Thank you for your attention!!! CCSWA PLS-DA DA ICA


Download ppt "10th Winter Symposium on Chemometrics"

Similar presentations


Ads by Google