Presentation is loading. Please wait.

Presentation is loading. Please wait.

Jari Koskinen, Sami Franssila

Similar presentations


Presentation on theme: "Jari Koskinen, Sami Franssila"— Presentation transcript:

1 Jari Koskinen, Sami Franssila jari.koskinen@aalto.fi 1.9.2016
XXX Thin Film Technology Doctoral course Plasma and ion bombardment (8 credits) Jari Koskinen, Sami Franssila

2 Contents plasma systems 2nd hour ion beam surface interactions Plasma
basic physics, parameters, ionization types of plasma generation of plasma emission of ions, plasma systems 2nd hour ion beam surface interactions collisions, cascades range sputtering simulations mixing

3 Plasma Plasma Gas of positive ions, electrons and (mostly) neutral atoms Etymology: Greek: “moulded” - plasma fills the chamber Charge neutrality ne = ni Colliding electrons ionise atoms Ions and electrons accelerate in electric field Collisions excite atoms De-excitation creates photons – visible light

4 Important plasma parameters
Oscillations Debye length mean free path ionization crossection

5 Hannu Koskinen Univ of Helsinki

6 hot&dense << 1 cold&sparce Hannu Koskinen Univ of Helsinki

7

8 Different types of plasmas
Thin film plasma processes Wikipedia

9 n = density of atoms (and ions) Total collistion cross section:
Hannu Koskinen Univ of Helsinki n = density of atoms (and ions) Total collistion cross section: σtotal = σexitation + σion + σattachment+ σother Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

10 Electron temperature Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

11 Electron and ion temperature
Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

12 Plasma sheath e.g. for practical sputter plasma ds ≈ some tens x λD
Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

13 Cold cathode discharge
Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

14 Types of disharge Typical mode in sputter deposition
Mahan, Physical Vapor Deposition of Thin Films, Wiley

15 Luminous regions in DC plasma
ions neutralize secondary electrons have slowed for max ionization electrons have accelerated sufficiently for ionization Mahan, Physical Vapor Deposition of Thin Films, Wiley

16 Practical sputtering plasma -1
Argon pressure 1 torr atom density (n) 3 x 1016 cm-3 ni=ne cm-3 ionization fraction 3 x 10-7 (weakly ionized plasma) ion temperature Ti 300K electron temperature Te 23,000K

17 Densities and temperatures in process plasmas
seconday electrons thru cathode sheath ions and neutrals back scattered form cathode ions accelerated to cathode electrons in main plasma dissociation products: ions&neutrals ions in main plasma process gas atoms&neutrals

18 Practical sputtering plasma -2
VDC 1000V Vp 8V Current density at cathode 2 mA/cm2 Cathode sheath L 2 mm mean free path λ 50 µm Mahan, Physical Vapor Deposition of Thin Films, Wiley

19 Circuit models of DC plasma discharge
Mahan, Physical Vapor Deposition of Thin Films, Wiley

20 Ion energy at cathode Ar+(hot) + Ar(cold)  Ar(hot)+Ar+(cold)
σ = 2.5 x cm-3 Mahan, Physical Vapor Deposition of Thin Films, Wiley

21 AC plasma methods

22 AC plasma Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes

23 Forming of self-bias in AC discharge
Mahan, Physical Vapor Deposition of Thin Films, Wiley

24 Self bias at electrodes
n n= 4 (sometimes 2) No simple model. One argument: “ impedance of smaller are electrode is higher -> higher potential difference” Sivu 24

25 Circuit models of RF plasma discharge
Mahan, Physical Vapor Deposition of Thin Films, Wiley

26 RF Plasma glow discharge

27 Arc plasma

28 Arc discharge deposition
Arc discharge video

29 Arc disharge – cathode spot

30 Arc discharge process arc current concentrated into filaments – arcs
intense electron emission intense ion emission due to electron current ( atoms/electrons – 1/100) ionization of atoms – formation of plasma flow of ions to cathode – intense sputtering of atoms A/m2 overlapping thermal spikes materials is melted and sublimated in cathode spots cathode spots move randomly or could be steered by using magnets electons ionize vapor and create more electrons – increase of current ions accelerate due to potential difference in plasma due to multiple collisions with fast electrons macro particles (up to 10 µm diam.I are formed Timko, Nordlund simulations

31 Filtered arc

32 HIPIMS

33 HIPIMS W. Sproul, AEPSE 2009 Tutorial “Pulsed Plasma Diffusion”

34 HIPIMS W. Sproul, AEPSE 2009 Tutorial

35 HIPIMS W. Sproul, AEPSE 2009 Tutorial

36 HIPIMS Cr W. Sproul, AEPSE 2009 Tutorial

37 HIPIMS W. Sproul, AEPSE 2009 Tutorial

38 Fluxes of ions in HIPIMS
J. Vac. Sci. Technol. A, Vol. 28, No. 4, Jul/Aug 2010 Sivu 38

39 HIPIMS denser films W. Sproul, AEPSE 2009 Tutorial

40 Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

41 Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

42 Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

43 Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

44 Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

45 Reactive sputtering W. Sproul, AEPSE 2009 Tutorial

46 Ion solid interarctions

47 Energetic ion surface interactions

48 Secondary electrons

49 Desorption, cleaning

50 Sputtering

51 Collision cascade, thermal spike
K. Nordlund

52 doping, compounds

53 Range of ions Sivu 53

54 Range Sivu 54

55 Collision cascades Sivu 55

56 Range and stopping range: enegy loss: stopping: Sivu 56

57 Reduced stopping Sivu 57

58 10 keV Si recoil atom in silicon
K. Nordlund

59 1 keV C+ in glass, Range

60 Range and damage 30 keV Ne+ in ZrO2

61 Kai Nordlund Univ of Helsinki Simulations

62 Sputtering Source of atoms and ions
Cleaning: Removing lose atoms, impurities, oxides Sivu 62

63 Sputter constant low ion energies < 1 keV Sivu 63

64 Sputtering yield

65 Sputter yield angle dependence

66 Sputter yield angle dependence and energy distribution

67 Sputter yield angle dependence and energy distribution

68 Energy distribution of sputteres atoms
Usb/2 1/E2 Sivu 68

69 Preferential sputtering
Sivu 69

70 TRIM and SRIM simulations
Sivu 70


Download ppt "Jari Koskinen, Sami Franssila"

Similar presentations


Ads by Google