Download presentation
Presentation is loading. Please wait.
1
Jari Koskinen, Sami Franssila jari.koskinen@aalto.fi 1.9.2016
XXX Thin Film Technology Doctoral course Plasma and ion bombardment (8 credits) Jari Koskinen, Sami Franssila
2
Contents plasma systems 2nd hour ion beam surface interactions Plasma
basic physics, parameters, ionization types of plasma generation of plasma emission of ions, plasma systems 2nd hour ion beam surface interactions collisions, cascades range sputtering simulations mixing
3
Plasma Plasma Gas of positive ions, electrons and (mostly) neutral atoms Etymology: Greek: “moulded” - plasma fills the chamber Charge neutrality ne = ni Colliding electrons ionise atoms Ions and electrons accelerate in electric field Collisions excite atoms De-excitation creates photons – visible light
4
Important plasma parameters
Oscillations Debye length mean free path ionization crossection
5
Hannu Koskinen Univ of Helsinki
6
hot&dense << 1 cold&sparce Hannu Koskinen Univ of Helsinki
8
Different types of plasmas
Thin film plasma processes Wikipedia
9
n = density of atoms (and ions) Total collistion cross section:
Hannu Koskinen Univ of Helsinki n = density of atoms (and ions) Total collistion cross section: σtotal = σexitation + σion + σattachment+ σother Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes
10
Electron temperature Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes
11
Electron and ion temperature
Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes
12
Plasma sheath e.g. for practical sputter plasma ds ≈ some tens x λD
Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes
13
Cold cathode discharge
Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes
14
Types of disharge Typical mode in sputter deposition
Mahan, Physical Vapor Deposition of Thin Films, Wiley
15
Luminous regions in DC plasma
ions neutralize secondary electrons have slowed for max ionization electrons have accelerated sufficiently for ionization Mahan, Physical Vapor Deposition of Thin Films, Wiley
16
Practical sputtering plasma -1
Argon pressure 1 torr atom density (n) 3 x 1016 cm-3 ni=ne cm-3 ionization fraction 3 x 10-7 (weakly ionized plasma) ion temperature Ti 300K electron temperature Te 23,000K
17
Densities and temperatures in process plasmas
seconday electrons thru cathode sheath ions and neutrals back scattered form cathode ions accelerated to cathode electrons in main plasma dissociation products: ions&neutrals ions in main plasma process gas atoms&neutrals
18
Practical sputtering plasma -2
VDC 1000V Vp 8V Current density at cathode 2 mA/cm2 Cathode sheath L 2 mm mean free path λ 50 µm Mahan, Physical Vapor Deposition of Thin Films, Wiley
19
Circuit models of DC plasma discharge
Mahan, Physical Vapor Deposition of Thin Films, Wiley
20
Ion energy at cathode Ar+(hot) + Ar(cold) Ar(hot)+Ar+(cold)
σ = 2.5 x cm-3 Mahan, Physical Vapor Deposition of Thin Films, Wiley
21
AC plasma methods
22
AC plasma Bunshah, Handbook of Deposition Technologies for Films and Coatings Noyes
23
Forming of self-bias in AC discharge
Mahan, Physical Vapor Deposition of Thin Films, Wiley
24
Self bias at electrodes
n n= 4 (sometimes 2) No simple model. One argument: “ impedance of smaller are electrode is higher -> higher potential difference” Sivu 24
25
Circuit models of RF plasma discharge
Mahan, Physical Vapor Deposition of Thin Films, Wiley
26
RF Plasma glow discharge
27
Arc plasma
28
Arc discharge deposition
Arc discharge video
29
Arc disharge – cathode spot
30
Arc discharge process arc current concentrated into filaments – arcs
intense electron emission intense ion emission due to electron current ( atoms/electrons – 1/100) ionization of atoms – formation of plasma flow of ions to cathode – intense sputtering of atoms A/m2 overlapping thermal spikes materials is melted and sublimated in cathode spots cathode spots move randomly or could be steered by using magnets electons ionize vapor and create more electrons – increase of current ions accelerate due to potential difference in plasma due to multiple collisions with fast electrons macro particles (up to 10 µm diam.I are formed Timko, Nordlund simulations
31
Filtered arc
32
HIPIMS
33
HIPIMS W. Sproul, AEPSE 2009 Tutorial “Pulsed Plasma Diffusion”
34
HIPIMS W. Sproul, AEPSE 2009 Tutorial
35
HIPIMS W. Sproul, AEPSE 2009 Tutorial
36
HIPIMS Cr W. Sproul, AEPSE 2009 Tutorial
37
HIPIMS W. Sproul, AEPSE 2009 Tutorial
38
Fluxes of ions in HIPIMS
J. Vac. Sci. Technol. A, Vol. 28, No. 4, Jul/Aug 2010 Sivu 38
39
HIPIMS denser films W. Sproul, AEPSE 2009 Tutorial
40
Reactive sputtering W. Sproul, AEPSE 2009 Tutorial
41
Reactive sputtering W. Sproul, AEPSE 2009 Tutorial
42
Reactive sputtering W. Sproul, AEPSE 2009 Tutorial
43
Reactive sputtering W. Sproul, AEPSE 2009 Tutorial
44
Reactive sputtering W. Sproul, AEPSE 2009 Tutorial
45
Reactive sputtering W. Sproul, AEPSE 2009 Tutorial
46
Ion solid interarctions
47
Energetic ion surface interactions
48
Secondary electrons
49
Desorption, cleaning
50
Sputtering
51
Collision cascade, thermal spike
K. Nordlund
52
doping, compounds
53
Range of ions Sivu 53
54
Range Sivu 54
55
Collision cascades Sivu 55
56
Range and stopping range: enegy loss: stopping: Sivu 56
57
Reduced stopping Sivu 57
58
10 keV Si recoil atom in silicon
K. Nordlund
59
1 keV C+ in glass, Range
60
Range and damage 30 keV Ne+ in ZrO2
61
Kai Nordlund Univ of Helsinki Simulations
62
Sputtering Source of atoms and ions
Cleaning: Removing lose atoms, impurities, oxides Sivu 62
63
Sputter constant low ion energies < 1 keV Sivu 63
64
Sputtering yield
65
Sputter yield angle dependence
66
Sputter yield angle dependence and energy distribution
67
Sputter yield angle dependence and energy distribution
68
Energy distribution of sputteres atoms
Usb/2 1/E2 Sivu 68
69
Preferential sputtering
Sivu 69
70
TRIM and SRIM simulations
Sivu 70
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.