Presentation is loading. Please wait.

Presentation is loading. Please wait.

2013 Annual Scientific Meeting of the SSRMP

Similar presentations


Presentation on theme: "2013 Annual Scientific Meeting of the SSRMP"— Presentation transcript:

1 2013 Annual Scientific Meeting of the SSRMP
Thomas Buchsbaum Lukas Hirschi, Federico Hasenbalg, Peter Pemler Orthopedic Hip Implants Extended Hounsfield Unit Scale Metal Artifact Reduction Evaluation of the Philips Brilliance Big Bore 2013 Annual Scientific Meeting of the SSRMP

2 The Problem 14cm2

3 A Solution by Philips: O-MAR
? Artifact Strength CT Value Accuracy ? CT Value Properties Segmentation Thresholds

4 Hip Stem Materials Titanium Alloys Cobalt Alloys Ti-6Al-7Nb alloy
ProtasulTM-100 ISO mass density: g/cm3 Zimmer CLS hip stem Cobalt Alloys CoNi35Cr20Mo10 ProtasulTM-10 ISO mass density: g/cm3 Sulzer Acknowledgment: Thanks to Dr. Jörg Huber, leading orthopedist at Triemli hospital Zürich, for making available the hip implant materials for this study; and to Norman Stark, manager of Materials and Retrievals Research at Zimmer GmbH, for providing specialized information about hip stem materials.

5 Analyses in a Water Phantom
Example: Co 400 ext.-HU voxels (3.8 cm2) O-MAR Std. 36.5 cm 18 cm Artifact Strength S.D. of CT values within ROI CT Value Accuracy Mean of CT values within ROI ROI ROI For illustration purposes, let‘s consider the a center ROI…, about 5 cm x 4 cm, 400(O-MAR)/420(Std) extended HU voxels

6 Artifact Strength: Kept Low by O-MAR
S.D. in HU 3.8 cm2 3.8 cm2 14.7 cm2

7 Influence on dose? CT Value Accuracy Mean CT value in HU 3.8 cm2

8 Plan Setup (AAA, 15X, AP-PA, 10 x 6)
100% dose in ISO of non-metal calculation; same MUs for every plan

9 O-MAR: Smallest Differences to Non-Metal Dose
Standard Reconstruction O-MAR % 14 cm

10 > 3071 HU

11 Material Properties Apparent in Extended HU Range
1.95 cm Ti Co O-MAR Profiles Dependence on cross-section (and material)  nevertheless, threshold such that volume equals physical volume

12 Segmentation of Prosthesis Material
CT Value Threshold 225 HU 1000 HU 3071 HU 4100 HU 6600 HU 8000 HU Ti Co 225 HU 1000 HU 3071 HU 4100 HU 6600 HU 8000 HU

13 Conclusions (1) O-MAR Improves Image Quality
Simplifies Contouring/Segmentation of Organs Improves AAA Dose Calculation; differences are small Co 6.7 cm2

14 Conclusions (2) Metals in extended Hounsfield unit range
Co and Ti can be classified, e.g. by 90%-quantiles Strong cupping effect CT value distribution depends on metal cross-section area Water phantom and patient data agree with each other Segmentation thresholds: HU for Ti and 6600 HU for Co Co segmented with Ti thresholds: 15% volume error, 4% error in diameter

15 References Li, Hua et al.: Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med. Phys. 39(12): Philips Healthcare: Metal Artifact Reduction for Orthopedic Implants (O-MAR). White Paper, Philips: Thomas Buchsbaum: Orthopedic Hip Implants, Extended Hounsfield Units, and Artifact Reduction: Evaluation of a Commercial CT System. Master’s Thesis, TU Kaiserslautern, 2013.

16 Do not hesitate to contact me

17 Backup

18 Philips O-MAR – Contraindications
External metals Bismuth-Abschirmung Source: Philips White Paper: Metal Artifact Reduction for Orthopedic Implants (O-MAR)

19 Better Accuracy with Std. Recon.; 2-sided Co

20 3D CT-Value Distribution

21 90%-Quantile vs. Cross-Section Area

22 Threshold-based Segmentation
Co segmented with Ti thresholds: 15% volume error, 4% error in diameter

23 Images, Co, 3.8 cm2

24 Images, Co, 14.7 cm2


Download ppt "2013 Annual Scientific Meeting of the SSRMP"

Similar presentations


Ads by Google