Presentation is loading. Please wait.

Presentation is loading. Please wait.

Structures for Discrete-Time Systems

Similar presentations


Presentation on theme: "Structures for Discrete-Time Systems"— Presentation transcript:

1 Structures for Discrete-Time Systems
主講人:虞台文

2 Content Introduction Block Diagram Representation Signal Flow Graph
Basic Structure for IIR Systems Transposed Forms Basic Structure for FIR Systems Lattice Structures

3 Structures for Discrete-Time Systems
Introduction

4 Characterize an LTI System
Impulse Response z-Transform Difference Equation

5 Example Noncomputable Computable

6 Basic Operations Addition Multiplication Delay
In fact, there are unlimited variety of computational structures. Computable

7 Why Implement Using Different Structures?
Finite-precision number representation of a digital computer. Truncation or rounding error. Modeling methods: Block Diagram Signal Flow Graph

8 Block Diagram Representation
+ x1(n) x2(n) x1(n) + x2(n) Adder x(n) a ax(n) Multiplier x(n) x(n1) z1 Unit Delay

9 Example + b a1 z1 a2 x(n) y(n) y(n1) y(n2)

10 Higher-Order Difference Equations

11 Block Diagram Representation (Direct Form I)
+ z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)

12 Block Diagram Representation (Direct Form I)
+ z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)

13 Block Diagram Representation (Direct Form I)
+ z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)

14 Block Diagram Representation (Direct Form I)
Implementing zeros Implementing poles Block Diagram Representation (Direct Form I) + z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)

15 Block Diagram Representation (Direct Form I)
How many Adders? How many multipliers? How many delays? Block Diagram Representation (Direct Form I) + z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)

16 Block Diagram Representation (Direct Form II)
+ z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N

17 Block Diagram Representation (Direct Form II)
+ z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N

18 Block Diagram Representation (Direct Form II)
Implementing poles Implementing zeros Block Diagram Representation (Direct Form II) + z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N

19 Block Diagram Representation (Direct Form II)
How many Adders? How many multipliers? How many delays? Block Diagram Representation (Direct Form II) + z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N

20 Block Diagram Representation (Canonic Direct Form)
+ b0 b1 bN1 bN x(n) z1 a1 aN1 aN y(n) Assume M = N

21 Block Diagram Representation (Canonic Direct Form)
How many Adders? How many multipliers? How many delays? max(M, N) Block Diagram Representation (Canonic Direct Form) + b0 b1 bN1 bN x(n) z1 a1 aN1 aN y(n) Assume M = N

22 Structures for Discrete-Time Systems
Signal Flow Graph

23 Nodes And Branches wj(n) wk(n)
Associated with each node is a variable or node value. wj(n) wk(n)

24 Nodes And Branches Input wj(n) wj(n) wk(n) Brach (j, k)
Output: A linear transformation of input, such as constant gain and unit delay. wj(n) wk(n) Brach (j, k) Each branch has an input signal and an output signal.

25 More on Nodes wj(n) wk(n)
An internal node serves as a summer, i.e., its value is the sum of outputs of all branches entering the node. wj(n) wk(n)

26 Source Nodes Nodes without entering branches xj(n) wk(n) Source node j

27 Sink Nodes yk(n) wj(n) Nodes that have only entering branches
Sink node k

28 Example x(n) y(n) w1(n) w2(n) a b c d e Source Node Sink Node

29 Block Diagram vs. Signal Flow Graph
x(n) w(n) y(n) + a z1 b1 b0 a b1 b0 z1 1 2 3 4 w1(n) x(n) y(n) w2(n) w3(n) w4(n)

30 Block Diagram vs. Signal Flow Graph
x(n) + a z1 b1 b0 w(n) y(n) w1(n) w2(n) w3(n) 1 2 3 4 w4(n)

31 Block Diagram vs. Signal Flow Graph

32 Structures for Discrete-Time Systems
Basic Structure for IIR Systems

33 Criteria Reduce the number of constant multipliers
Increase speed Reduce the number of delays Reduce the memory requirement Modularity: VLSI design The effects of finite register length and finite-precision arithmetic.

34 Basic Structures Direct Forms Cascade Form Parallel Form

35 Direct Forms

36 Direct Form I x(n) v(n) y(n) b0 b1 x(n1) x(n2) x(nN) b2 bN-1 bN
a1 a2 aN-1 aN y(n1) y(n2) y(nN) y(nN+1) z1 v(n)

37 Direct Form I x(n) v(n) y(n) b0 b1 x(n1) x(n2) x(nN) b2 bN-1 bN
a1 a2 aN-1 aN y(n1) y(n2) y(nN) y(nN+1) z1 v(n)

38 Direct Form II x(n) y(n) w(n) b0 b1 b2 bN-1 bN a1 a2 aN-1 aN z1

39 Direct Form II x(n) y(n) w(n) b0 b1 b2 bN-1 bN a1 a2 aN-1 aN z1

40 Example x(n) y(n) x(n) y(n) Direct Form I Direct Form II z1 2 0.75
0.125 x(n) y(n) z1 2 Direct Form II 0.75 0.125

41 Cascade Form

42 Cascade Form

43 Cascade Form 2nd Order System

44 Cascade Form x(n) y(n) z1 a11 a21 b11 b21 b01 z1 a12 a22 b12 b22 b01

45 Another Cascade Form

46 Parallel Form

47 Parallel Form Group Real Poles Complex Poles Poles at zero Real Poles

48 Parallel Form z1 a1k a2k e0k e1k

49 Parallel Form x(n) y(n)

50 Example 8 x(n) y(n) z1 0.75 0.125 7

51 Example z1 0.5 18 8 x(n) y(n) 0.25 25

52 Structures for Discrete-Time Systems
Transposed Forms

53 Signal Flow Graph Transformation
To transform signal graphs into different forms while leaving the overall system function between input and output unchanged.

54 Transposition of Signal Flow Graph
Reverse the directions of all arrows. Changes the roles of input and output. z1 a z1 a x(n) y(n) y(n) x(n)

55 Transposition of Signal Flow Graph
Are there any relations between the two systems? x(n) y(n) z1 a

56 Example: x(n) y(n) z1 a y(n) x(n) x(n) y(n) z1 a z1 a

57 Transposition of Signal Flow Graph
Reverse the directions of all arrows. Changes the roles of input and output. x(n) y(n) z1 a Detail proof see reference

58 Structures for Discrete-Time Systems
Basic Structure for FIR Systems

59 FIR For causal FIR systems, the system function has only zeros.

60 Direct Form x(n) y(n) z1 h(0) h(1) h(2) h(M1) h(M)

61 Direct Form x(n) y(n) y(n) x(n) z1 h(0) h(1) h(2) h(M1) h(M) z1

62 Direct Form x(n) y(n) y(n) x(n) z1 h(0) h(1) h(2) h(M1) h(M) z1

63 Cascade Form

64 Cascade Form x(n) y(n) z1 b01 b11 b21 b02 b12 b22 b1Ms b2Ms b0Ms

65 Structures for Linear Phase Systems
A generalized linear phase system satisfies: h(Mn) = h(n) for n = 0,1,…,M or h(Mn) = h(n) for n = 0,1,…,M M is even M is odd h(Mn) = h(n) h(Mn) = h(n) Type I Type II Type III Type VI

66 Type I

67 Type I x(n) y(n) z1 h(M/2) h(M/21) h(0) h(1) h(2)

68 Type II, III and VI Construct them in a similar manner by yourselves.

69 Structures for Discrete-Time Systems
Lattice Structures

70 Consider x(n)=(n), one will see
FIR Lattice

71 Consider x(n)=(n), one will see
FIR Lattice

72 Consider x(n)=(n), one will see
FIR Lattice

73 Define Consider x(n)=(n), one will see FIR Lattice

74 Define FIR Lattice Show that

75 FIR Lattice FIR Lattice i=1: Show that

76 FIR Lattice FIR Lattice i = n: Assumed true i = n+1 also true.
Prove i = n+1 also true. Show that

77 FIR Lattice FIR Lattice =

78 FIR Lattice FIR Lattice

79 FIR Lattice FIR Lattice Given the lattice, to find A(z). m=0 k1 k2 k3

80 FIR Lattice FIR Lattice Given A(z), to find the lattice. m=0 m=1 m=2

81 FIR Lattice FIR Lattice Given A(z), to find the lattice. m=0 m=1 m=2

82 Example 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.9 0.1820 0.64 0.576

83 Example 0.576 0.1820 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64 0.576

84 Inverse Filter

85 All-Pole Filter

86 All-Pole Filter

87 All-Pole Filter

88 All-Pole Filter

89 Example 0.576 0.1820 0.6728 0.6728 0.1820 0.1820 0.576  0.576

90 Example 0.9  0.64 0.576 0.6728 0.6728 0.1820 0.1820 0.576  0.576

91 Stability of All-Pole Filter
All zeros of A(z) have to lie within the unit circle. Necessary and sufficient conditions: All of k-parameters ki’s satisfy |ki| < 1.

92 Normalized Lattice

93 Normalized Lattice

94 Normalized Lattice Section i

95 Normalized Lattice Section i Section N N1 1

96 Normalized Lattice Section i Three-Multiplier Form

97 Normalized Lattice Four-Multiplier, Kelly-Lochbaum Form
Three-Multiplier Form Four-Multiplier, Normalized Form

98 Normalized Lattice Three-Multiplier Form Section N N1 1

99 Normalized Lattice Four-Multiplier, Normalized Form Section N N1 1

100 Normalized Lattice Four-Multiplier, Kelly-Lochbaum Form Section N N1

101 Lattice Systems with Poles and Zeros
Section N1 1 N c0 c1 cN2 cN1 cN

102 Lattice Systems with Poles and Zeros
Section N1 1 N c0 c1 cN2 cN1 cN

103 Lattice Systems with Poles and Zeros

104 Example 0.6728 0.6728 0.1820 0.1820 0.576  0.576 c3 c2 c1 c0

105 Example 1 c3 c2 c1 c0 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64
0.6728 0.1820 0.1820 0.576  0.576 c3 c2 c1 c0 Example 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64 0.576

106 Example 0.6728 0.6728 0.1820 0.1820 0.576  0.576 1 3.9 5.4612 4.5404


Download ppt "Structures for Discrete-Time Systems"

Similar presentations


Ads by Google