Download presentation
Presentation is loading. Please wait.
1
Structures for Discrete-Time Systems
主講人:虞台文
2
Content Introduction Block Diagram Representation Signal Flow Graph
Basic Structure for IIR Systems Transposed Forms Basic Structure for FIR Systems Lattice Structures
3
Structures for Discrete-Time Systems
Introduction
4
Characterize an LTI System
Impulse Response z-Transform Difference Equation
5
Example Noncomputable Computable
6
Basic Operations Addition Multiplication Delay
In fact, there are unlimited variety of computational structures. Computable
7
Why Implement Using Different Structures?
Finite-precision number representation of a digital computer. Truncation or rounding error. Modeling methods: Block Diagram Signal Flow Graph
8
Block Diagram Representation
+ x1(n) x2(n) x1(n) + x2(n) Adder x(n) a ax(n) Multiplier x(n) x(n1) z1 Unit Delay
9
Example + b a1 z1 a2 x(n) y(n) y(n1) y(n2)
10
Higher-Order Difference Equations
11
Block Diagram Representation (Direct Form I)
+ z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)
12
Block Diagram Representation (Direct Form I)
+ z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)
13
Block Diagram Representation (Direct Form I)
+ z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)
14
Block Diagram Representation (Direct Form I)
Implementing zeros Implementing poles Block Diagram Representation (Direct Form I) + z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)
15
Block Diagram Representation (Direct Form I)
How many Adders? How many multipliers? How many delays? Block Diagram Representation (Direct Form I) + z1 b0 b1 bM1 bM x(n) x(n1) x(n2) x(nM) a1 aN1 aN y(n) y(n1) y(n2) y(nM) v(n)
16
Block Diagram Representation (Direct Form II)
+ z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N
17
Block Diagram Representation (Direct Form II)
+ z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N
18
Block Diagram Representation (Direct Form II)
Implementing poles Implementing zeros Block Diagram Representation (Direct Form II) + z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N
19
Block Diagram Representation (Direct Form II)
How many Adders? How many multipliers? How many delays? Block Diagram Representation (Direct Form II) + z1 b0 b1 bN1 bN x(n) a1 aN1 aN y(n) w(n1) w(n2) w(nN) w(n) Assume M = N
20
Block Diagram Representation (Canonic Direct Form)
+ b0 b1 bN1 bN x(n) z1 a1 aN1 aN y(n) Assume M = N
21
Block Diagram Representation (Canonic Direct Form)
How many Adders? How many multipliers? How many delays? max(M, N) Block Diagram Representation (Canonic Direct Form) + b0 b1 bN1 bN x(n) z1 a1 aN1 aN y(n) Assume M = N
22
Structures for Discrete-Time Systems
Signal Flow Graph
23
Nodes And Branches wj(n) wk(n)
Associated with each node is a variable or node value. wj(n) wk(n)
24
Nodes And Branches Input wj(n) wj(n) wk(n) Brach (j, k)
Output: A linear transformation of input, such as constant gain and unit delay. wj(n) wk(n) Brach (j, k) Each branch has an input signal and an output signal.
25
More on Nodes wj(n) wk(n)
An internal node serves as a summer, i.e., its value is the sum of outputs of all branches entering the node. wj(n) wk(n)
26
Source Nodes Nodes without entering branches xj(n) wk(n) Source node j
27
Sink Nodes yk(n) wj(n) Nodes that have only entering branches
Sink node k
28
Example x(n) y(n) w1(n) w2(n) a b c d e Source Node Sink Node
29
Block Diagram vs. Signal Flow Graph
x(n) w(n) y(n) + a z1 b1 b0 a b1 b0 z1 1 2 3 4 w1(n) x(n) y(n) w2(n) w3(n) w4(n)
30
Block Diagram vs. Signal Flow Graph
x(n) + a z1 b1 b0 w(n) y(n) w1(n) w2(n) w3(n) 1 2 3 4 w4(n)
31
Block Diagram vs. Signal Flow Graph
32
Structures for Discrete-Time Systems
Basic Structure for IIR Systems
33
Criteria Reduce the number of constant multipliers
Increase speed Reduce the number of delays Reduce the memory requirement Modularity: VLSI design The effects of finite register length and finite-precision arithmetic.
34
Basic Structures Direct Forms Cascade Form Parallel Form
35
Direct Forms
36
Direct Form I x(n) v(n) y(n) b0 b1 x(n1) x(n2) x(nN) b2 bN-1 bN
a1 a2 aN-1 aN y(n1) y(n2) y(nN) y(nN+1) z1 v(n)
37
Direct Form I x(n) v(n) y(n) b0 b1 x(n1) x(n2) x(nN) b2 bN-1 bN
a1 a2 aN-1 aN y(n1) y(n2) y(nN) y(nN+1) z1 v(n)
38
Direct Form II x(n) y(n) w(n) b0 b1 b2 bN-1 bN a1 a2 aN-1 aN z1
39
Direct Form II x(n) y(n) w(n) b0 b1 b2 bN-1 bN a1 a2 aN-1 aN z1
40
Example x(n) y(n) x(n) y(n) Direct Form I Direct Form II z1 2 0.75
0.125 x(n) y(n) z1 2 Direct Form II 0.75 0.125
41
Cascade Form
42
Cascade Form
43
Cascade Form 2nd Order System
44
Cascade Form x(n) y(n) z1 a11 a21 b11 b21 b01 z1 a12 a22 b12 b22 b01
45
Another Cascade Form
46
Parallel Form
47
Parallel Form Group Real Poles Complex Poles Poles at zero Real Poles
48
Parallel Form z1 a1k a2k e0k e1k
49
Parallel Form x(n) y(n)
50
Example 8 x(n) y(n) z1 0.75 0.125 7
51
Example z1 0.5 18 8 x(n) y(n) 0.25 25
52
Structures for Discrete-Time Systems
Transposed Forms
53
Signal Flow Graph Transformation
To transform signal graphs into different forms while leaving the overall system function between input and output unchanged.
54
Transposition of Signal Flow Graph
Reverse the directions of all arrows. Changes the roles of input and output. z1 a z1 a x(n) y(n) y(n) x(n)
55
Transposition of Signal Flow Graph
Are there any relations between the two systems? x(n) y(n) z1 a
56
Example: x(n) y(n) z1 a y(n) x(n) x(n) y(n) z1 a z1 a
57
Transposition of Signal Flow Graph
Reverse the directions of all arrows. Changes the roles of input and output. x(n) y(n) z1 a Detail proof see reference
58
Structures for Discrete-Time Systems
Basic Structure for FIR Systems
59
FIR For causal FIR systems, the system function has only zeros.
60
Direct Form x(n) y(n) z1 h(0) h(1) h(2) h(M1) h(M)
61
Direct Form x(n) y(n) y(n) x(n) z1 h(0) h(1) h(2) h(M1) h(M) z1
62
Direct Form x(n) y(n) y(n) x(n) z1 h(0) h(1) h(2) h(M1) h(M) z1
63
Cascade Form
64
Cascade Form x(n) y(n) z1 b01 b11 b21 b02 b12 b22 b1Ms b2Ms b0Ms
65
Structures for Linear Phase Systems
A generalized linear phase system satisfies: h(Mn) = h(n) for n = 0,1,…,M or h(Mn) = h(n) for n = 0,1,…,M M is even M is odd h(Mn) = h(n) h(Mn) = h(n) Type I Type II Type III Type VI
66
Type I
67
Type I x(n) y(n) z1 h(M/2) h(M/21) h(0) h(1) h(2)
68
Type II, III and VI Construct them in a similar manner by yourselves.
69
Structures for Discrete-Time Systems
Lattice Structures
70
Consider x(n)=(n), one will see
FIR Lattice
71
Consider x(n)=(n), one will see
FIR Lattice
72
Consider x(n)=(n), one will see
FIR Lattice
73
Define Consider x(n)=(n), one will see FIR Lattice
74
Define FIR Lattice Show that
75
FIR Lattice FIR Lattice i=1: Show that
76
FIR Lattice FIR Lattice i = n: Assumed true i = n+1 also true.
Prove i = n+1 also true. Show that
77
FIR Lattice FIR Lattice =
78
FIR Lattice FIR Lattice
79
FIR Lattice FIR Lattice Given the lattice, to find A(z). m=0 k1 k2 k3
80
FIR Lattice FIR Lattice Given A(z), to find the lattice. m=0 m=1 m=2
81
FIR Lattice FIR Lattice Given A(z), to find the lattice. m=0 m=1 m=2
82
Example 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.9 0.1820 0.64 0.576
83
Example 0.576 0.1820 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64 0.576
84
Inverse Filter
85
All-Pole Filter
86
All-Pole Filter
87
All-Pole Filter
88
All-Pole Filter
89
Example 0.576 0.1820 0.6728 0.6728 0.1820 0.1820 0.576 0.576
90
Example 0.9 0.64 0.576 0.6728 0.6728 0.1820 0.1820 0.576 0.576
91
Stability of All-Pole Filter
All zeros of A(z) have to lie within the unit circle. Necessary and sufficient conditions: All of k-parameters ki’s satisfy |ki| < 1.
92
Normalized Lattice
93
Normalized Lattice
94
Normalized Lattice Section i
95
Normalized Lattice Section i Section N N1 1
96
Normalized Lattice Section i Three-Multiplier Form
97
Normalized Lattice Four-Multiplier, Kelly-Lochbaum Form
Three-Multiplier Form Four-Multiplier, Normalized Form
98
Normalized Lattice Three-Multiplier Form Section N N1 1
99
Normalized Lattice Four-Multiplier, Normalized Form Section N N1 1
100
Normalized Lattice Four-Multiplier, Kelly-Lochbaum Form Section N N1
101
Lattice Systems with Poles and Zeros
Section N1 1 N c0 c1 cN2 cN1 cN
102
Lattice Systems with Poles and Zeros
Section N1 1 N c0 c1 cN2 cN1 cN
103
Lattice Systems with Poles and Zeros
104
Example 0.6728 0.6728 0.1820 0.1820 0.576 0.576 c3 c2 c1 c0
105
Example 1 c3 c2 c1 c0 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64
0.6728 0.1820 0.1820 0.576 0.576 c3 c2 c1 c0 Example 1 m=0 m=1 m=2 m=3 0.6728 0.7952 0.1820 0.9 0.64 0.576
106
Example 0.6728 0.6728 0.1820 0.1820 0.576 0.576 1 3.9 5.4612 4.5404
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.