Presentation is loading. Please wait.

Presentation is loading. Please wait.

Increasing openness, reproducibility, and prediction in social science research My general substantive interest in the gap between values and practices.

Similar presentations


Presentation on theme: "Increasing openness, reproducibility, and prediction in social science research My general substantive interest in the gap between values and practices."— Presentation transcript:

1 Increasing openness, reproducibility, and prediction in social science research
My general substantive interest in the gap between values and practices. The work that I am discussing today is a practical application of this interest to the gap between scientific values and practices. In particular, how can I best advance knowledge and my career at the same time? Challenges I face when working to advance scientific knowledge and my career at the same time. And, how my scientific practices can be adapted to meet my scientific values. Brian Nosek University of Virginia -- Center for Open Science

2 Norms Counternorms Communality Secrecy Open sharing Closed
Communality – open sharing with colleagues; Secrecy Universalism – research evaluated only on its merit; Particularism – research evaluated by reputation/past productivity Disinterestedness – scientists motivated by knowledge and discovery, not by personal gain; self-interestedness – treat science as a competition with other scientists Organized skepticism – consider all new evidence, theory, data, even if it contradicts one’s prior work/point-of-view; organized dogmatism – invest career in promoting one’s own most important findings, theories, innovations Quality – seek quality contributions; Quantity – seek high volume

3 Norms Counternorms Communality Universalism Secrecy Particularlism
Open sharing Universalism Evaluate research on own merit Secrecy Closed Particularlism Evaluate research by reputation Communality – open sharing with colleagues; Secrecy Universalism – research evaluated only on its merit; Particularism – research evaluated by reputation/past productivity Disinterestedness – scientists motivated by knowledge and discovery, not by personal gain; self-interestedness – treat science as a competition with other scientists Organized skepticism – consider all new evidence, theory, data, even if it contradicts one’s prior work/point-of-view; organized dogmatism – invest career in promoting one’s own most important findings, theories, innovations Quality – seek quality contributions; Quantity – seek high volume

4 Norms Counternorms Communality Universalism Disinterestedness Secrecy
Open sharing Universalism Evaluate research on own merit Disinterestedness Motivated by knowledge and discovery Secrecy Closed Particularlism Evaluate research by reputation Self-interestedness Treat science as a competition Communality – open sharing with colleagues; Secrecy Universalism – research evaluated only on its merit; Particularism – research evaluated by reputation/past productivity Disinterestedness – scientists motivated by knowledge and discovery, not by personal gain; self-interestedness – treat science as a competition with other scientists Organized skepticism – consider all new evidence, theory, data, even if it contradicts one’s prior work/point-of-view; organized dogmatism – invest career in promoting one’s own most important findings, theories, innovations Quality – seek quality contributions; Quantity – seek high volume

5 Norms Counternorms Communality Universalism Disinterestedness
Open sharing Universalism Evaluate research on own merit Disinterestedness Motivated by knowledge and discovery Organized skepticism Consider all new evidence, even against one’s prior work Secrecy Closed Particularlism Evaluate research by reputation Self-interestedness Treat science as a competition Organized dogmatism Invest career promoting one’s own theories, findings Communality – open sharing with colleagues; Secrecy Universalism – research evaluated only on its merit; Particularism – research evaluated by reputation/past productivity Disinterestedness – scientists motivated by knowledge and discovery, not by personal gain; self-interestedness – treat science as a competition with other scientists Organized skepticism – consider all new evidence, theory, data, even if it contradicts one’s prior work/point-of-view; organized dogmatism – invest career in promoting one’s own most important findings, theories, innovations Quality – seek quality contributions; Quantity – seek high volume

6 Norms Counternorms Communality Universalism Disinterestedness
Open sharing Universalism Evaluate research on own merit Disinterestedness Motivated by knowledge and discovery Organized skepticism Consider all new evidence, even against one’s prior work Quality Secrecy Closed Particularlism Evaluate research by reputation Self-interestedness Treat science as a competition Organized dogmatism Invest career promoting one’s own theories, findings Quantity Communality – open sharing with colleagues; Secrecy Universalism – research evaluated only on its merit; Particularism – research evaluated by reputation/past productivity Disinterestedness – scientists motivated by knowledge and discovery, not by personal gain; self-interestedness – treat science as a competition with other scientists Organized skepticism – consider all new evidence, theory, data, even if it contradicts one’s prior work/point-of-view; organized dogmatism – invest career in promoting one’s own most important findings, theories, innovations Quality – seek quality contributions; Quantity – seek high volume

7 Anderson, Martinson, & DeVries, 2007

8 Challenges Low power Flexibility in analysis Selective reporting Ignoring nulls Lack of replication Examples from: Button et al – Neuroscience Ioannidis – why most results are false (Medicine) GWAS Biology Two possibilities are that the percentage of positive results is inflated because negative results are much less likely to be published, and that we are pursuing our analysis freedoms to produce positive results that are not really there. These would lead to an inflation of false-positive results in the published literature. Some evidence from bio-medical research suggests that this is occurring. Two different industrial laboratories attempted to replicate 40 or 50 basic science studies that showed positive evidence for markers for new cancer treatments or other issues in medicine. They did not select at random. Instead, they picked studies considered landmark findings. The success rates for replication were about 25% in one study and about 10% in the other. Further, some of the findings they could not replicate had spurred large literatures of hundreds of articles following up on the finding and its implications, but never having tested whether the evidence for the original finding was solid. This is a massive waste of resources. Across the sciences, evidence like this has spurred lots of discussion and proposed actions to improve research efficiency and avoid the massive waste of resources linked to erroneous results getting in and staying in the literature, and about the culture of scientific practices that is rewarding publishing, perhaps at the expense of knowledge building. There have been a variety of suggestions for what to do. For example, the Nature article on the right suggests that publishing standards should be increased for basic science research. [It is not in my interest to replicate – myself or others – to evaluate validity and improve precision in effect estimates (redundant). Replication is worth next to zero (Makel data on published replications; motivated to not call it replication; novelty is supreme – zero “error checking”; not in my interest to check my work, and not in your interest to check my work (let’s just each do our own thing and get rewarded for that) Irreproducible results will get in and stay in the literature (examples from bio-med). Prinz and Begley articles (make sure to summarize accurately) The Nature article by folks in bio-medicine is great. The solution they offer is a popular one in commentators from the other sciences -- raise publishing standards. Sterling, 1959; Cohen, 1962; Lykken, 1968; Tukey, 1969; Greenwald, 1975; Meehl, 1978; Rosenthal, 1979

9 Figure credit: fivethirtyeight.com
Silberzahn et al., 2015

10

11 Median effect size (d) = .29 % p < .05 = 63%
Reported Tests (122) Median p-value = .02 Median effect size (d) = .29 % p < .05 = 63% Unreported Tests (147) Median p-value = .35 Median effect size (d) = .13 % p < .05 = 23% We find that about 40% of studies fail to fully report all experimental conditions and about 70% of studies do not report all outcome variables included in the questionnaire. Reported effect sizes are about twice as large as unreported effect sizes and are about 3 times more likely to be statistically significant. N = 32 studies in psychology Unreported tests (147) Median p-value = .35 Median d = .13 % significant = 23% Reported tests (N = 122) Median p = .02 Median d = .29 % sig p<.05 = 63% Franco, Malhotra, & Simonovits, 2015, SPPS

12 Positive Result Rate dropped from 57% to 8% after preregistration required.

13 97% 37% xx Open Science Collaboration, 2015, Science

14 Dreber et al., 2016, PNAS

15 Fig. 3. Probability of a hypothesis being true at three different stages of
testing: before the initial study (p0), after the initial study but before the replication (p1), and after replication (p2). “Error bars” (or whiskers) represent range, boxes are first to third quartiles, and thick lines are medians. Initially, priors of the tested hypothesis are relatively low, with a median of 8.8% (range, 0.7–66%). A positive result in an initial publication then moves the prior into a broad range of intermediate levels, with a median of 56% (range, 10–97%). If replicated successfully, the probability moves further up, with a median of 98% (range, 93.0–99.2%). If the replication fails, the probability moves back to a range close to the initial prior, with a median of 6.3% (range, 0.01–80%). Dreber et al., 2016, PNAS

16 98% 56% Fig. 3. Probability of a hypothesis being true at three different stages of testing: before the initial study (p0), after the initial study but before the replication (p1), and after replication (p2). “Error bars” (or whiskers) represent range, boxes are first to third quartiles, and thick lines are medians. Initially, priors of the tested hypothesis are relatively low, with a median of 8.8% (range, 0.7–66%). A positive result in an initial publication then moves the prior into a broad range of intermediate levels, with a median of 56% (range, 10–97%). If replicated successfully, the probability moves further up, with a median of 98% (range, 93.0–99.2%). If the replication fails, the probability moves back to a range close to the initial prior, with a median of 6.3% (range, 0.01–80%). 8.8% 6.3% Dreber et al., 2016, PNAS

17 Testing and Evaluation Support
Preregistration: Protocols, Analysis Plans

18 PREREGISTRATION Context of Justification Confirmation Data independent
Hypothesis testing Context of Discovery Exploration Data contingent Hypothesis generating p-values interpretable p-values NOT interpretable PREREGISTRATION Presenting exploratory as confirmatory increases publishability of results at the cost of credibility of results Study 1 Study 1 Study 2

19 Preregistration Challenge http://cos.io/prereg

20 Testing and Evaluation Support
Preregistration: Protocols, Analysis Plans Open Science Framework: Workflow and data management and preservation

21

22 OpenSesame

23 OpenSesame

24 OSF osf.io Application Framework journals registries preprint servers
Workflow Authentication Permissions File Storage File Rendering Persistence Meta-database Integrations Search SHARE Data osf.io journals registries preprint servers grants management OSF is actually an application framework It is a public good and scholarly commons It supports the interface you see if you google OSF Blog engine, Slide sharing (osf.io/meetings) Workflow integration Authentication File storage File rendering Database Metadata/Annotations/Commenting External service integrations Search SHARE Data peer review services curation, annotation

25 Testing and Evaluation Support
Preregistration: Protocols, Analysis Plans Open Science Framework: Workflow and data management and preservation Registered Reports: Journal management and recruiting

26 Registered Reports PEER REVIEW Design Collect & Analyze Report Publish
Review of intro and methods prior to data collection; published regardless of outcome Beauty vs. accuracy of reporting Publishing negative results Conducting replications Peer review focuses on quality of methods Committee Chair: Chris Chambers

27 Registered Reports 39 journals so far
AIMS Neuroscience Attention, Percept., & Psychophys Cognition and Emotion Cognitive Research Comp. Results in Social Psychology Cortex Drug and Alcohol Dependence eLife Euro Journal of Neuroscience Experimental Psychology Human Movement Science Int’l Journal of Psychophysiology Journal of Accounting Research Journal of Business and Psychology Journal of Euro. Psych. Students Journal of Expt’l Political Science Journal of Personnel Psychology Journal of Media Psychology Leadership Quarterly Nature Human Behaviour Nicotine and Tobacco Research NFS Journal Nutrition and Food Science Journal Perspectives on Psych. Science Royal Society Open Science Social Psychology Stress and Health Work, Aging, and Retirement Review of intro and methods prior to data collection; published regardless of outcome Beauty vs. accuracy of reporting Publishing negative results Conducting replications Peer review focuses on quality of methods Committee Chair: Chris Chambers

28 Big Picture: Phase 1, Cycle 1
Oct-Nov: Launch, information gathering, define testing and evaluation plan Nov-Mar: OSF & preregistration training, preregister initial studies, Registered Reports process Apr-Aug: Capture data and workflow, share across teams Aug-Nov: Facilitate replications Nov-Dec: Facilitate comparing predictions and original, replication outcomes

29 Email matt.spitzer@cos.io the journal titles most relevant to you
Right now the journal titles most relevant to you

30 Next steps Share your proposals, study approach with matt@cos.io
Scheduling education and training for OSF and Preregistration Developing journal partnerships for Registered Reports

31 Contact info Brian Nosek, Matt Spitzer, NGS2 Poster shared: These slides shared:


Download ppt "Increasing openness, reproducibility, and prediction in social science research My general substantive interest in the gap between values and practices."

Similar presentations


Ads by Google