Download presentation
Presentation is loading. Please wait.
1
Complex Numbers 12 Learning Outcomes
In this chapter you have learned how to: Plot complex numbers on the Argand diagram Find the modulus of a complex number and calculate the complex conjugate Add, subtract, multiply and divide complex numbers Use complex numbers to perform transformations Solve equations with complex roots and use the Conjugate Root Theorem Write complex numbers in polar form Prove de Moivreโs Theorem Use de Moivreโs Theorem to evaluate (a + bi)n, a, b โ R, n โ Z Use de Moivreโs Theorem to find the roots of complex numbers
2
12 Complex Numbers Definition
A Complex Number z is a number of the form ๐ง=๐+๐๐, ๐, ๐โ๐
, ๐ 2 =โ1. a is called the real part of z, Re z . b is called the imaginary part of z, Im z . Examples: 2+3๐, 5โ2๐, ๐, 2 โ3๐ Note: The complex numbers ๐ง 1 =๐+๐๐ and ๐ง 2 =๐+๐๐ are equal if ๐=๐ and ๐=๐. Simplify ๐ ๐ . ๐ 4 =( ๐ 2 ) 2 =(โ1 ) 2 =1 ๐=๐ ๐ 2 =โ1 ๐ 3 =โ๐ ๐ 4 =1 ๐ 5 =๐ ๐ 6 =โ1 ๐ 7 =โ๐ ๐ 8 =1 ๐ 9 =๐ Solve the equation ๐ ๐ +๐๐=๐. ๐ง 2 +36=0 ๐ง 2 =โ36 ๐ง=ยฑ โ36 ๐ง=ยฑ โ1 ๐ง=ยฑ6๐ Note the repeating pattern.
3
12 Complex Numbers The Argand Diagram
A complex number can be represented on a diagram called the Argand diagram. Here are the complex numbers ๐ง 1 =3+2๐, ๐ง 2 =4โ3๐ and ๐ง 3 =โ2โ5๐ represented on an Argand diagram. -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 Re Im ๐ง 1 =3+2๐ ๐ง 2 =4โ3๐ ๐ง 3 =โ2โ5๐ Modulus of a Complex Number Definition The modulus of a complex number, ๐+๐๐, is its distance from the origin. The modulus of ๐+๐๐ is written |๐+๐๐|. |๐+๐๐|= ๐ ๐ + ๐ ๐ If ๐ ๐ =๐+๐๐๐ find | ๐ ๐ |. ๐ง 1 = 7+24๐ = = = 625 =25
4
Addition, Subtraction, Multiplication and Division of Complex Numbers
12 Complex Numbers Addition, Subtraction, Multiplication and Division of Complex Numbers Addition ๐๐ ๐ ๐ =๐โ๐๐ ๐๐ง๐ ๐ ๐ =๐๐+๐๐ evaluate ๐ ๐ + ๐ ๐ . ๐ง 1 + ๐ง 2 = 2โ3๐ +(11+5๐) =2โ3๐+11+5๐ Add the real parts to the real parts and the imaginary parts to the imaginary parts. ๐ง 1 + ๐ง 2 =13+2๐ Subtraction ๐๐ ๐ ๐ =๐๐+๐๐๐ ๐๐ง๐ ๐ ๐ =๐๐โ๐๐ evaluate ๐ ๐ โ ๐ ๐ . ๐ง 1 โ ๐ง 2 = 18+16๐ โ(14โ2๐) =18+16๐โ14+2๐ Add the real parts to the real parts and the imaginary parts to the imaginary parts. ๐ง 1 โ ๐ง 2 =4+18๐
5
12 Complex Numbers Multiplication
๐๐ ๐ ๐ =๐โ๐๐ ๐๐ง๐ ๐ ๐ =๐+๐๐ evaluate ๐ ๐ ๐ ๐ . ๐ง 1 ๐ง 2 =(2โ7๐)(3+7๐) =2(3+7๐)โ7๐(3+7๐) =6+14๐โ21๐โ49 ๐ 2 =6+14๐โ21๐โ49(โ1) =6+14๐โ21๐+49 =55โ7๐ Conjugate of a Complex Number Definition If ๐ง=๐+๐๐, then the ๐๐จ๐ง๐ฃ๐ฎ๐ ๐๐ญ๐ of ๐ง written as ๐ง =๐โ๐๐. Rule: Change the sign of the imaginary part. Example: If ๐ง=โ2โ12๐, then ๐ง =โ2+12๐.
6
12 Complex Numbers ๐+๐๐๐ ๐+๐ . Division Calculate
๐+๐๐๐ ๐+๐ . Note: When dividing by a complex number multiply the numerator and the denominator by the conjugate of the denominator. Step 1 Write down the conjugate of the denominator: 2+๐ =2โ๐ Step 2 Multiply the denominator 2+๐ by 2โ๐. 2+๐ 2โ๐ =2 2โ๐ +๐(2โ๐) =4โ2๐+2๐โ ๐ 2 =5 Step 3 Multiply the numerator by 2โ๐. 2+11๐ 2โ๐ =2 2โ๐ +11๐(2โ๐) =4โ2๐+22๐โ11 ๐ 2 =4+20๐+11 Step 4 2+11๐ 2+๐ = 15+20๐ 5 =15+20๐ =3+4๐
7
12 Complex Numbers Transformations
The addition of complex numbers is the equivalent of a translation on the complex plane. If ๐ ๐ =๐+๐๐ and ๐=๐+๐ plot ๐ ๐ + ๐ on an Argand diagram. Describe the transformation that maps the addition of ๐ ๐ to ๐ ๐ +๐. The multiplication of a complex number by ๐ is the equivalent of rotating the complex number anti-clockwise through ๐๐ ยฐ about the origin. ๐๐ ๐ ๐ =๐+๐ ๐๐ง๐ ๐=๐(๐+๐) describe the transformation that maps ๐ ๐ to ๐. -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 Re Im ๐ง 1 +๐=3+5๐ ๐ง 1 =2+4๐ -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 Re Im ๐=1+๐ ๐=โ1+2๐ ๐ง 1 =2+๐ ๐ง 1 โ๐ง 1 + ๐ is a translation. ๐ง 1 โ ๐ is a+90ยฐ rotation.
8
Quadratic Equations with Complex Roots
12 Complex Numbers Quadratic Equations with Complex Roots ๐ ๐ฅ 2 +๐๐ฅ+๐=0, ๐, ๐, ๐โ๐
, ๐โ 0 is solved by using the formula ๐ฅ= โ๐ยฑ ๐ 2 โ 4๐๐ 2๐ . In this formula, ๐ 2 โ4๐๐ is the discriminant. If ๐ 2 โ4๐๐<0, then the solutions (roots) will be complex. Solve the equation ๐ ๐ โ๐๐+๐๐=๐. -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 Re Im ๐ง= 6ยฑ (โ6 ) 2 โ4(1)(13) 2(1) = 6ยฑ 36โ52 2 ๐ง=3+2๐ = 6ยฑ โ16 2 = 6ยฑ4๐ 2 ๐ง=3โ2๐ โด๐ง=3ยฑ2๐ The Conjugate Root Theorem If the complex number ๐ง=๐+๐๐, ๐, ๐โ๐
, is a root of a polymomial with real coefficients, then ๐ง =๐โ๐๐ (conjugate of z) is also a root.
9
Polynomials with Complex Roots
12 Complex Numbers Polynomials with Complex Roots If ๐+๐๐ is a root of ๐ ๐ ๐ โ๐ ๐ ๐ +๐๐๐+๐, find the other roots. 1+2๐ is a root โด1โ2๐ is a root. (Conjugate Root Theorem) Step 1 Form a quadratic polynomial with these two roots. ๐ง 2 โ sum of roots ๐ง+product of roots=0 Sum of roots= 1+2๐ + 1โ2๐ =2 Product of roots= 1+2๐ 1โ2๐ =5 So the quadratic polynomial is ๐ง 2 โ2๐ง+5=0 Step 2 Divide this function into the cubic function. Step 3 3๐ง+1 is a linear factor. Therefore, the solution to the equation 3๐ง+1 = 0 gives the real root. 3๐ง+1=0 โน๐ง= โ 1 3 The three roots are ๐ง=1+2๐, ๐ง=1โ2๐, ๐ง=โ 1 3
10
โ 12 Complex Numbers Polar Form of a Complex Number (โ 3 ) 2 +(1 ) 2
Re Im Definition ๐=|๐ฅ+๐ฆ๐| ๐ง=๐ฅ+๐ฆ๐ The polar form of a complex number z is ๐ ๐๐๐ ๐+๐ ๐ ๐๐๐ , where r is the modulus of the complex number and ๐ is its argument anticlockwise angle . tan ๐ = ๐ฆ ๐ฅ โน๐= tan โ1 ๐ฆ ๐ฅ ๐ ๐ฆ ๐ ๐ฅ Write the complex number โ ๐ +๐ in polar form. Re Im ๐= tan โ1 ๐ฆ ๐ฅ ๐=|๐ฅ+๐ฆ๐| ๐ง=โ 3 +๐ ๐ผ= tan โ ๐=|โ 3 +๐| 1 ๐ ๐ผ ๐= โ (โ 3 ) 2 +(1 ) 2 ๐ผ= ๐ 6 3 (0,0) ๐= 3+1 ๐=๐โ ๐ 6 = 5๐ 6 ๐=2 Polar Form: ๐ cos๐+๐ sin๐ =2(cos 5๐ 6 +๐ sin 5๐ 6 )
11
12 Complex Numbers De Moivreโs Theorem Theorem
If ๐ง=๐( cos ๐+๐ sin ๐) then ๐ง ๐ = ๐ ๐ ( cos ๐๐+๐ sin ๐๐), for ๐โ๐. i.e: [๐( cos ๐+๐ sin ๐) ] ๐ = ๐ ๐ ( cos ๐๐+๐ sin ๐๐), for ๐โ๐. The formal proof of De Moivreโs Theorem may be asked in the exam. Use de Moivreโs Theorem to write (๐+๐ ) ๐๐ in the form ๐+๐๐, ๐,๐โ๐น. Step 1 Write 1+๐ in polar form, ๐ cos๐+๐ sin๐ . Re Im ๐= tan โ1 ๐ฆ ๐ฅ ๐= ๐ 4 ๐= tan โ1 1 1+๐ Polar Form: ๐ cos๐+๐ sin๐ = 2 (cos ๐ 4 +๐ sin ๐ 4 ) 1 [๐( cos ๐+๐ sin ๐) ] ๐ = ๐ ๐ ( cos ๐๐+๐ sin ๐๐) ๐ (0,0) 1 Step 2 Apply de Moivreโs Theorem. = ( 2 ) 10 [cos ( ๐ 4 )+๐ sin ( ๐ 4 ) ] 10 = ( 2 ) 10 [cos 10( ๐ 4 )+๐ sin 10( ๐ 4 )] = cos ( 5๐ 2 )+๐ sin ( 5๐ 2 ) ๐=|๐ฅ+๐ฆ๐| ๐= (1 ) 2 +(1 ) 2 ๐= 2 = 32[0+1๐] = 0+32๐
12
โ 12 Complex Numbers (2 ) 2 +(2 3 ) 2
If ๐=โ๐โ๐ ๐ ๐, solve the equation ๐ ๐ โ๐=๐. ๐ง=(โ2โ2 3 ๐ ) 1 4 ๐ง 4 =๐ ๐ง 4 =โ2โ2 3 ๐ Step 1 Express โ2โ2 3 ๐ in general polar form: ๐[( cos ๐+2๐๐ + ๐ sin (๐+2๐๐)] ๐=โ2โ2 3 ๐ ๐ ๐ผ ๐ผ= tan โ โน๐ผ= ๐ 3 ๐= โ (2 ) 2 +(2 3 ) 2 ๐=โ๐+ ๐ 3 =โ 2๐ 3 ๐= 16 =4 General polar form: ๐=4 cos โ 2๐ 3 +2๐๐ + ๐ sin โ 2๐ 3 +2๐๐ Step 2 Apply de Moivreโs Theorem: ๐ง=4 cos โ 2๐ 3 +2๐๐ + ๐ sin โ 2๐ 3 +2๐๐ 1 4 =4 [ cos โ ๐ 6 + ๐๐ 2 + ๐ sin (โ ๐ 6 + ๐๐ 2 )] 1 4
13
12 Complex Numbers ๐ง=4 cos โ ๐ 6 + ๐๐ 2 + ๐ sin โ ๐ 6 + ๐๐ 2 . 1 4
Step 3 Find the four solutions of For ๐=๐ For ๐=๐ ๐ง= 2 cos โ ๐ 6 + ๐ sin โ ๐ 6 ๐ง= 2 cos โ ๐ 6 +๐ + ๐sin โ ๐ 6 +๐ = โ 1 2 ๐ = cos 5๐ 6 + ๐sin 5๐ 6 ๐ ๐ = ๐ ๐ โ ๐ ๐ ๐ = 2 โ ๐ ๐ ๐ =โ ๐ ๐ + ๐ ๐ ๐ For ๐=๐ For ๐=๐ ๐ง= 2 cos โ ๐ 6 + 3๐ 2 + ๐sin โ ๐ 6 + 3๐ 2 ๐ง= cos โ ๐ 6 + ๐ 2 + ๐sin โ ๐ 6 + ๐ 2 = 2 cos ๐ 3 + ๐sin ๐ 3 = cos 4๐ 3 + ๐sin 4๐ 3 = ๐ ๐ ๐ = ๐ ๐ โ ๐ ๐ ๐ = 2 โ 1 2 โ ๐ ๐ ๐ =โ ๐ ๐ โ ๐ ๐ ๐
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.