Presentation is loading. Please wait.

Presentation is loading. Please wait.

H. Kamada (Kyushu Institute of Technology, Japan) H. Witala , J

Similar presentations


Presentation on theme: "H. Kamada (Kyushu Institute of Technology, Japan) H. Witala , J"— Presentation transcript:

1 Relativistic Faddeev calculations for elastic Nd scattering with Kharkov potential  
H. Kamada (Kyushu Institute of Technology, Japan) H. Witala , J. Golak, R. Skibinski (Jagiellonian University, Poland) O. Shebeko , A. Arslanaliev (Kharkov Institute of Physics and Technology, NAS of Ukraine, Kharkiv, Ukraine) APFB 2017 2017 –AUG-24~30, Guilin, CHINA

2 Outline  §1 Motivation §2 Relativistic Calculation §3 Identification to the relativistic potential §4 Boost Correction §5 Kharkov potential §6 Triton binding energy §7 Nd elastic scattering §8 Summary and Outlook

3 §1 Motivation  The nonrelativistic theoretical prediction of the Nd scattering backward cross section beyond 200MeV/u is getting to be poor even including the 3-body force (FM type). What is missing?

4 Phys. Rev. C 57, 2111 (1998)

5 §2 Relativistic Calculation
§2 Relativistic Calculation There are essentially two different approaches to relativistic three-nucleon calculation: ① a manifestly covariant scheme linked to a field theoretical approach. ② a scheme based on relativistic quantum mechanics on spacelike hypersurfaces (including the light front) in Minkowski space.

6 B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1952).
Within the second scheme② the relativistic Hamiltonian for on-the-mass-shell particles consists of relativistic kinetic energies and two- and many-body interactions including their boost corrections, which are dictated by the Poincare algebra.

7 What is the boost correction?
A potential in an arbitrary moving frame (q≠0) is different, which enters a relativistic Lippmann-Schwinger equation. q≠0 Vnr Vnr (q=0) (q=0)≠  (q≠0)

8 Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^
E k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

9 Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^
E k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

10 Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^
E k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

11 Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^
E k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

12 §3 Identification to the relativistic potential

13 “Realistic NN potential” ΧPT,AV18, CDBonn, Nijmegen etc start
Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 Identification Type 2 yes Boost potential Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end

14 §3 Identification to the relativistic potential
Few-Body Syst. (2010) 48, 109

15 : (pseudo) Relativistic potential
Type 1 “Scale-transformation from nonrelativity to relativity ” : (pseudo) Relativistic potential Scale transformation Phys. Rev. Lett. 80, 2457(1998)

16 Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^
E k’’2/m Relativistic LS eq. ^ ^

17 Coester-Pieper-Serduke (CPS)
Type 2 Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975))

18

19 Sandwiching it between <k | and |k’>, we get
nr Sandwiching it between <k | and |k’>, we get

20 Physics Letters B655, 119-125 (2007), (nucl-th/0703010)
Iteration Method Physics Letters B655, (2007), (nucl-th/ )

21 Convergence to the iteration

22

23

24

25 §4 Boost Correction Boosted Hamiltonian in 2N system
Physics Letters B655, (2007), (nucl-th/ )

26 Real Part q=0 fm-1 q=10 fm-1 q=20 fm-1 CD-Bonn potential
1S0 partial wave E=350MeV Half-shell t-matrix

27 Imaginary Part q=20 fm-1 q=10 fm-1 CD-Bonn potential 1S0 partial wave
E=350MeV Half-shell t-matrix q=0 fm-1

28 §5 Kharkov potential

29 I. Dubovyk, O. Shebeko, Few-Body Sys. 48, 109 (2010).
Kharkov Potential I. Dubovyk, O. Shebeko, Few-Body Sys. 48, 109 (2010).

30 Two-body t-matrix Nonrelativistic LS eq. Relativistic LS eq. ^ ^
E k’’2/m Relativistic LS eq. ^ ^ Boosted relativisitic LS eq.

31 ΧPT,AV18, CDBonn, Nijmegen etc Kharkov start Boost potential
Relativistic potential? ΧPT,AV18, CDBonn, Nijmegen etc no Identification Type 1 Identification Type 2 yes Kharkov Boost potential Enter the relativistic Faddeev equation Output : Triton binding energy Pd scattering end

32 Deuteron Wave Function
S-Wave pψ(p)[fm ] 1/2 Solid:Kharkov Dotted: CDBonn -1 p [fm ]

33 Deuteron Wave Function
D-Wave pψ(p)[fm ] 1/2 Solid:Kharkov Dotted: CDBonn -1 p [fm ]

34 §6 Triton Binding Energy
Type 1 Type 2 Coester-Pieper-Serduke (CPS) Type 0 no identification “Scale-transform it from nonrelativity to relativity ” (ST)

35 Triton binding energies (Type 1)
MeV Rel. Nonrel. Phys. Rev. C66, (2002) 5ch calculation

36 Triton binding energies (Type 2)
MeV Rel. Nonrel. -6.97 -8.22 -7.58 -7.90 -7.68 -7.59 -7.02 -8.33 -7.65 -8.00 -7.76 -7.66 0.05 0.11 0.07 0.10 0.08 5ch calculation EPJ Web of Conferences 3, (2010)

37 Triton binding energies (Type 0) of Kharkov potential
Relativistic Nonrelativistic Difference Kharkov(UCT1)  -7.42 (-7.49) 0.07 AV18 (-7.59) -7.66 CD-Bonn (-8.22) -8.33 0.11 Type 2 5ch calculation H.Kamada, O. Shebeko, A. Arslanaliev, Few-Body Syst. 58 (2017), 70.

38 Triton binding energies (Type2) of N4LO and Kharkov pot.
(MeV) Regularization  Relativistic Nonrelativistic Difference χEFT R=0.9 (-7.706) -7.832 0.126 χEFT R=1.0 (-7.748) -7.867 0.119 χEFT R=1.1 (-7.733) -7.848 0.115 CD-Bonn (-8.150) -8.249 0.099 Kharkov(UCT1) -7.460 (-7.528) 0.068 Kharkov(UCT2) -7.981 (-8.099) 0.118 N4LO pot. : E. Epelbaum et al., Eur. Phys. J. A51, 53 (2015) ; E. Epelbaum et al., Phys. Rev. Lett. 115, (2015) 42ch calculation

39 Triton Binding Energy Type1 Type2 [MeV] Kharkov(UCT1) Kharkov(UCT2)
←Exp. CDBonn [MeV]

40 §7 Elastic Nd scattering
§7 Elastic Nd scattering

41 Comparison I Relativistic and non-relativistic (without 3NF)
Kharkov potential (UCT1) dσ/dΩ differential cross section Ay proton vector polarization iT11 deuteron vector polarization T20, T21, T22 deuteron vector polarization Ep=5,13,65,135 MeV

42 5MeV 13MeV 65MeV 135MeV

43 5MeV 13MeV 65MeV 135MeV

44 13MeV 5MeV 65MeV 135MeV

45 13MeV 5MeV 65MeV 135MeV

46 5MeV 13MeV 65MeV 135MeV

47 5MeV 13MeV 65MeV 135MeV

48 5MeV 13MeV 65MeV 135MeV

49 Phys. Rev. C 57, 2111 (1998)

50 Θc.m.=180deg

51 Comparison II CDBonn (rel.) Kharkov (UCT1) Kharkov (UCT2)

52 5MeV 13MeV 65MeV 135MeV CDBonn UCT1 UCT2

53 5MeV 13MeV 65MeV 135MeV CDBonn UCT1 UCT2

54 Ay puzzle Koike’s conjecture 3P0 3P1 3P2 NN phase shift (P-wave) 50MeV
Partial wave Nijmegen DATA CDBonn Bonn B UCT1 UCT2 Effect on Ay (UCT1,UCT2) 3P0 10.70 10.79 12.24 12.16 11.78 ↓,↓ 3P1 -8.25 -8.23 -8.77 -8.58 -7.82 -,- 3P2 5.89 5.91 6.14 6.00 4.77 -, ↓ The NN phase shift is not well described yet !

55 5MeV 13MeV CDBonn UCT1 UCT2 65MeV 135MeV

56 5MeV 13MeV CDBonn UCT1 UCT2 65MeV 135MeV

57 5MeV CDBonn UCT1 UCT2 13MeV 65MeV 135MeV

58 5MeV 13MeV 65MeV 135MeV CDBonn UCT1 UCT2

59 §8 Summary and Outlook ・Kharkov potential: ⇒Kharkov potential gives relativistic potential directly. (No need identifications) start Relativistic potential? Boost potential Enter the relativistic Faddeev equation Identification Type 1 Identification Type 2 yes no end Output : Triton binding energy Pd scattering Kharkov ΧPT,AV18, CDBonn, Nijmegen etc

60 §8 Summary and Outlook ・Triton binding energies: ⇒ Chiral potentials (N4LO) give similar results (-7.71~-7.73MeV) as CDBonn potential (-8.15MeV). ⇒ Kharkov potential (UCT1) needs not any identification and gives MeV. ⇒ Kharkov potential has a rather small difference between the relativistic binding energies and the nonrelativistic one. ⇒We need much 3 body force to reach data (8.48MeV).

61 §8 Summary and Outlook ・ Relativistic results for Nd elastic scattering: ⇒ The first Nd scattering calculation for Kharkov pot. ⇒ In the low energy region (<65MeV) the results of Kharkov potential reasonably agree with the CDBonn potential case except for Ay and iT11. ⇒ The phase shift of P-wave is not enough described. ⇒ Beyond the intermediate energy region (>65MeV) the prediction of Kharkov potential is getting to differ from the CDBonn potential case. However, it is difficult to distinguish whether the difference causes from relativistic effect or from its own parameterization.

62 §8 Summary and Outlook ・ Relativistic results for Nd elastic scattering: ⇒ 3body force was not included. ⇒ Kharkov potential gains less triton binding energy |Eb| than CDBonn potential case, therefore, we expect larger contribution from 3 body force.

63 CDBonn Nonrel Rel. Nonrel+3NF Rel.+3NF

64

65 dσ/d Ω [mb/sr] 150 400 Θc.m.[deg]


Download ppt "H. Kamada (Kyushu Institute of Technology, Japan) H. Witala , J"

Similar presentations


Ads by Google