Download presentation
Presentation is loading. Please wait.
Published byJerome Stevenson Modified over 6 years ago
1
© 2003, Cisco Systems, Inc. All rights reserved.
2
Basics Information
3
Objectives (Cont.) Convert a decimal number to a binary number
Convert a binary number to a decimal number Convert a binary number to a hexadecimal number Convert a hexadecimal number to a binary number Lesson Aim <Enter lesson aim here.>
4
Units of Information Units Bytes Bits bit (b) — 1 bit byte (B) 1 byte
kilobyte (KB) 1000 bytes 8000 bits megabyte (MB) 1 million bytes 8 million bits gigabyte (GB) 1 billion bytes 8 billion bits
5
Decimal-to-Binary Conversion
(r = remainder) 253/2 = r 1 126/2 = r 0 63/2 = r 1 31/2 = r 1 15/2 = r 1 7/2 = r 1 3/2 = r 1 1/2 = r 1 Converting a decimal number (253) to binary by successive division by 2 Write the binary number in order of the last bit first:
6
Base 2 Numbering System Number of Symbols 2 2 2 2 2 2 2 2 Symbols 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 Base Exponent 27 26 25 24 23 22 21 20 Place Value 128 64 32 16 8 4 2 1 Example: Convert decimal 35 to binary 1 1 1
7
Binary-to-Decimal Conversion
Convert the binary number to a decimal number (Binary bits have decimal values) Decimal Position Value 1 or 128*1 + 64*1 + 32*1 + 16*1 + 8*1 + 4*1 + 2*0 + 1*1 = 253
8
Base 2 Number System Number of Symbols 2 Symbols 0, 1 Base Exponent 27 26 25 24 23 22 21 20 Place Value 128 64 32 16 8 4 2 1 Example: Binary Number 1 1 1 1 1 Decimal number Total: 185 128 32 16 8 1
9
Binary-and-Hexadecimal Systems
00 1 01 2 02 3 03 4 04 5 05 6 06 7 07 8 08 9 09 10 0A 11 0B 12 0C 13 0D 14 0E 15 0F 16 10 32 20 64 40 128 80 255 FF
10
Binary-and-Hexadecimal Number Systems
0000 = 1000 = 8 0001 = 1 1001 = 9 0010 = 2 1010 = A 0011 = 3 1011 = B 0100 = 4 1100 = C 0101 = 5 1101 = D 0110 = 6 1110 = E 0111 = 7 1111 = F
11
Binary-to-Hexadecimal Conversion Example
Converts to: Converts to: F D C So: Binary = 1245F7DC9 hexadecimal
12
Hexadecimal-to-Binary Conversion Example
Converts to: So: 2102 hexadecimal converts to: binary
13
Summary (Cont.) Computers can recognize and process data only by using the binary numbering system. The binary number system is made up of 0s and 1s. Decimal numbers can be converted to binary numbers by following specific procedures. The hexadecimal number system is used frequently at higher levels of computation. The hexadecimal number system uses 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.