Download presentation
Presentation is loading. Please wait.
1
…..viewed through ALADiN
Experimental Signature of the Nuclear Liquid-Gas Phase Transition …..viewed through ALADiN Concettina Sfienti for the ALADiN2000 Collaboration The nuclear phase-diagram The ALADiN Recipes Consensus Experimental Signatures Discussed Experimental Signatures Phase Transitions in Asymmetric Matter
2
How it all begun emulsion data Bo Jakobsson@NUFRA2007
The nuclear phase-diagram
3
The liquid-gas phase transition of nuclear matter
QGP MeV Gas Temperature Liquid ? Density r/r0 The nuclear phase-diagram
4
The liquid-gas phase transition of nuclear matter
QGP MeV Ions Collisions Gas Heavy Temperature Liquid ? Density r/r0 The nuclear phase-diagram
5
The liquid-gas phase transition of nuclear matter
QGP MeV Ions Collisions Gas Heavy Temperature Liquid W. Trautmann et al., NN2000 Strasbourg ? Density r/r0 The nuclear phase-diagram
6
Making boiling nuclei Disadvantages: Typical Incident Energy 30AMeV
Flow scentralcollision 0 Overlap Participant & Spectators Spectators can be heated ! Advantages of the Recipe Typical Incident Energy 1 AGeV (almost) no flow Source well localized in rapidity Equilibrated System Easy 4p coverage for fragments Disadvantages of the Recipe Varying Size of the system by varying Excitation Energy. The ALADiN Recipes
7
Projectile fragmentation with ALADiN
Int. Conf. on Nucleus-Nucleus Collisions, 1982 Nucl. Phys. A 400 (1983) 565 ALADiN2000 Z, tracking and ToF multi-hit recognition The ALADiN Recipes
8
The ALADiN Spectrometer
ALL Fragments (Z 2) Isotope Resolution Protons...(but TOF) The ALADiN Recipes
9
UNIVERSALITY of Spectator Fragmentation
Charge partition (I) UNIVERSALITY of Spectator Fragmentation Consensus Experimental Signatures
10
Charge partition (II) Consensus Experimental Signatures
11
Charge partition (III)
Self Similarity and Scaling Fisher 1967 Multics PRC2003 IsIs PRL2002 Au Liquid-Gas t =2.2 0.024 Consensus Experimental Signatures
12
Bimodality of the magnetization in a finite Ising ferromagnet at
From Charge Partition to Bimodality L∞ order parameter M Binder & Landau PRB30 (1984) L finite Field H Bimodality of the magnetization in a finite Ising ferromagnet at phase transition Characteristic of a finite system slope at Hc Ld/T LOPEZ/RIVET, WCI3 Town Meeting, College Station (Texas) February, Transition point Discussed Experimental Results
13
Bimodality as a Signature of NM- Phase Transition?
Results from Reaction centrality Source Size (A) Bimodal variable INDRA Central ~200 Z1-Z2 Zliq-Zgas INDRA* ~100 Asym12 Peripheral MULTICS/ MINIBALL ~180 NIMROD 24-40 Discussed Experimental Results
14
D-Scaling (I) Identifying the order parameter:
Varying a control parameter (eg. Temperature) The order parameter m exhibits a change of Δ-scaling regime Ordered system Disordered system Discussed Experimental Results
15
Identifying the order parameter:
D-Scaling (II) Ordered Phase (D~1/2) Disordered Phase (D~1) Discussed Experimental Results
16
Δ~0.5 Δ~1. Discussed Experimental Results
17
Heat (Calories per grams) Temperature (degrees)
Some more things that we think we know Consensus Experimental Signatures
18
Nuclear Thermometer Central question: At which time do we measure the temperature with each thermometer? Consensus Experimental Signatures
19
S.Albergo et al. Il Nuovo Cimento A (1985)
Some History…. S.Albergo et al. Il Nuovo Cimento A (1985) X.Campi et al. PRC50(1994)2680 Consensus Experimental Signatures
20
Community Consensus Caloric Curves
From the existing data Caloric curves can be defined in different mass regions Results from quite varied entrance channel systems, reaction dynamics and projectile energy ranges appear to be consistent. J.B. Natowitz et al., Phys.Rev. C (2002) Consensus Experimental Signatures
21
Bauer, Gelbke, Pratt, Annu.Rev.Nuc.Part.Sci. 42, 77 (1992)
Intensity interferometry Information from interferometry: Two-particle correlation are sensitive to space-time extension of emitting source C(P,q)=∫d3x Fp(r) |f(r,q)|2 C(q) Relative Momentum, q Bauer, Gelbke, Pratt, Annu.Rev.Nuc.Part.Sci. 42, 77 (1992) Discussed Experimental Results
22
Results from particle-particle correlations
S. Fritz et al., Phys. Lett. B 461 (1999) 315 S. Pratt Discussed Experimental Results
23
A real challenge... Correlations 1+R(q) q (MeV/c)
S. Pratt 1+R(q) q (MeV/c) Correlations L.Beaulieu et al, Phys.Rev.Lett. 84 (2000) Space-time (resolution?) Flow Finite Size Coulomb Sequential Decays Discussed Experimental Results
24
New directions Changing: of the fragmenting source
Muller Serot PRC 1995 Changing: The isospin content (N/Z) The Coulomb properties of the fragmenting source An extra dimension Phase Transitions in Asymmetric Matter
25
Phase Transitions in Asymmetric Matter
Muller Serot PRC 1995 Neutron rich nuclei: isospin distillation Bonche Vautherin NPA 1984 (asymmetry rp/rn) Proton rich nuclei: vanishing limiting temperatures Phase Transitions in Asymmetric Matter
26
Bonche, Levit, Vautherin, NPA 436, 265 (1985)
Some History…. Bonche, Levit, Vautherin, NPA 436, 265 (1985) Temperature-dependent Hartree-Fock in a box: the nucleus in equilibrium with its surrounding vapor Proton rich nuclei: vanishing limiting temperatures limits of stability Phase Transitions in Asymmetric Matter
27
Hunting for Limiting Effects
M.Baldo et al. Phys. Rev. C (2004) Tc ≥ 15 MeV Testing microscopic calculations Phase Transitions in Asymmetric Matter
28
Conclusions…. For the most recent review: EPJA 30 (2006) Special Issue Freeze-out in the coexistence region: fragments, temperature, density The largest fragment as order parameter first or second order ? Limiting temperatures and the nucleus in equilibrium with its vapor ?
29
The 2000 Collaboration S.Bianchin, K.Kezzar, A.Le Fèvre, J.Lühning J.Lukasik, U.Lynen, W.F.J. Müller, H.Orth, A.N.Otte, H.Sann, C.Sfienti, C.Schwarz, W.Trautmann, J. Wiechula, M.Hellström, D.Henzlova, K.Sümmerer, H.Weick, P.Adrich, T.Aumann, H.Emling, Y.Leifels, R.Palit, H.Simon, H.Johansson, M.De Napoli, G.Imme', G.Raciti, E.Rapisarda, R.Bassini, C.Boiano,I.Iori, A.Pullia, W.G.Lynch, M.Mocko, M.B.Tsang, M.Wallace, G. Verde, C.O.Bacri, A.Boudard, J-E.Ducret, A. Lafriakh, E.Le Gentil, C.Volant, A. Chibihi, J. D. Frankland, T. Barczyk, J.Brzychczyk, J.Cibor, Z.Majka, A.Mykulyak, P.Pawlowski, A.Wieloch, B. Zwieglinski, B.Czech and A.S.Botvina
30
The phase diagram of strongly interacting matter
Source: NUCLEAR SCIENCE, A Teacher’s Guide to the Nuclear Science Wall Chart, Figure 9-2 The nuclear phase-diagram
31
Zbound .vs. Excitation Energy
A. Schüttauf et al., Nucl. Phys. A607(1996)457 Universality of fragment partition assures universality of Zbound.vs.,<Eo>/<Ao> correlation J. Pochodzalla et al., Phys. Rev. Lett. 75(1995)1040 Things that we know, we know
32
Neutrons Multiplicities
(N/Z) projectile neutron initial (by P.Pawlowski) ● ● ● SMM ensemble calculations for γ=14, preliminary Things that we thought we didn’t know…
33
Bonche, Levit, Vautherin, NPA 436, 265 (1985)
Limiting Temperature Bonche, Levit, Vautherin, NPA 436, 265 (1985) Temperature-dependent Hartree-Fock in a box: the nucleus in equilibrium with its surrounding vapor J.B. Natowitz et al., Phys.Rev. C (2002) limits of stability Phase Transitions in Asymmetric Matter
34
Small Isotopic effects .vs. Isotopic temperature Small effects Small
Phase Transitions in Asymmetric Matter
35
Hunting for Limiting Effects
Initial System System at breakup Discriminant analysis J. Łukasik et al., NIMA 587(2008) 413 Heavy Residue disappearance Limiting Temperature case Phase Transitions in Asymmetric Matter
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.