Presentation is loading. Please wait.

Presentation is loading. Please wait.

…..viewed through ALADiN

Similar presentations


Presentation on theme: "…..viewed through ALADiN"— Presentation transcript:

1 …..viewed through ALADiN
Experimental Signature of the Nuclear Liquid-Gas Phase Transition …..viewed through ALADiN Concettina Sfienti for the ALADiN2000 Collaboration The nuclear phase-diagram The ALADiN Recipes Consensus Experimental Signatures Discussed Experimental Signatures Phase Transitions in Asymmetric Matter

2 How it all begun emulsion data Bo Jakobsson@NUFRA2007
The nuclear phase-diagram

3 The liquid-gas phase transition of nuclear matter
QGP MeV Gas Temperature Liquid ? Density r/r0 The nuclear phase-diagram

4 The liquid-gas phase transition of nuclear matter
QGP MeV Ions Collisions Gas Heavy Temperature Liquid ? Density r/r0 The nuclear phase-diagram

5 The liquid-gas phase transition of nuclear matter
QGP MeV Ions Collisions Gas Heavy Temperature Liquid W. Trautmann et al., NN2000 Strasbourg ? Density r/r0 The nuclear phase-diagram

6 Making boiling nuclei Disadvantages: Typical Incident Energy  30AMeV
Flow scentralcollision  0 Overlap Participant & Spectators Spectators can be heated ! Advantages of the Recipe Typical Incident Energy  1 AGeV (almost) no flow Source well localized in rapidity Equilibrated System Easy 4p coverage for fragments Disadvantages of the Recipe Varying Size of the system by varying Excitation Energy. The ALADiN Recipes

7 Projectile fragmentation with ALADiN
Int. Conf. on Nucleus-Nucleus Collisions, 1982 Nucl. Phys. A 400 (1983) 565 ALADiN2000 Z, tracking and ToF multi-hit recognition The ALADiN Recipes

8 The ALADiN Spectrometer
ALL Fragments (Z 2) Isotope Resolution Protons...(but TOF) The ALADiN Recipes

9 UNIVERSALITY of Spectator Fragmentation
Charge partition (I) UNIVERSALITY of Spectator Fragmentation Consensus Experimental Signatures

10 Charge partition (II) Consensus Experimental Signatures

11 Charge partition (III)
Self Similarity and Scaling Fisher 1967 Multics PRC2003 IsIs PRL2002 Au Liquid-Gas t =2.2 0.024 Consensus Experimental Signatures

12 Bimodality of the magnetization in a finite Ising ferromagnet at
From Charge Partition to Bimodality L∞ order parameter M Binder & Landau PRB30 (1984) L finite Field H Bimodality of the magnetization in a finite Ising ferromagnet at phase transition Characteristic of a finite system slope at Hc  Ld/T LOPEZ/RIVET, WCI3 Town Meeting, College Station (Texas) February, Transition point Discussed Experimental Results

13 Bimodality as a Signature of NM- Phase Transition?
Results from Reaction centrality Source Size (A) Bimodal variable INDRA Central ~200 Z1-Z2 Zliq-Zgas INDRA* ~100 Asym12 Peripheral MULTICS/ MINIBALL ~180 NIMROD 24-40 Discussed Experimental Results

14 D-Scaling (I) Identifying the order parameter:
Varying a control parameter (eg. Temperature)  The order parameter m exhibits a change of Δ-scaling regime Ordered system Disordered system Discussed Experimental Results

15 Identifying the order parameter:
D-Scaling (II) Ordered Phase (D~1/2) Disordered Phase (D~1) Discussed Experimental Results

16 Δ~0.5 Δ~1. Discussed Experimental Results

17 Heat (Calories per grams) Temperature (degrees)
Some more things that we think we know Consensus Experimental Signatures

18 Nuclear Thermometer Central question: At which time do we measure the temperature with each thermometer? Consensus Experimental Signatures

19 S.Albergo et al. Il Nuovo Cimento A (1985)
Some History…. S.Albergo et al. Il Nuovo Cimento A (1985) X.Campi et al. PRC50(1994)2680 Consensus Experimental Signatures

20 Community Consensus Caloric Curves
From the existing data Caloric curves can be defined in different mass regions Results from quite varied entrance channel systems, reaction dynamics and projectile energy ranges appear to be consistent. J.B. Natowitz et al., Phys.Rev. C (2002) Consensus Experimental Signatures

21 Bauer, Gelbke, Pratt, Annu.Rev.Nuc.Part.Sci. 42, 77 (1992)
Intensity interferometry Information from interferometry: Two-particle correlation are sensitive to space-time extension of emitting source C(P,q)=∫d3x Fp(r) |f(r,q)|2 C(q) Relative Momentum, q Bauer, Gelbke, Pratt, Annu.Rev.Nuc.Part.Sci. 42, 77 (1992) Discussed Experimental Results

22 Results from particle-particle correlations
S. Fritz et al., Phys. Lett. B 461 (1999) 315 S. Pratt Discussed Experimental Results

23 A real challenge... Correlations 1+R(q) q (MeV/c)
S. Pratt 1+R(q) q (MeV/c) Correlations L.Beaulieu et al, Phys.Rev.Lett. 84 (2000) Space-time (resolution?) Flow Finite Size Coulomb Sequential Decays Discussed Experimental Results

24 New directions Changing: of the fragmenting source
Muller Serot PRC 1995 Changing: The isospin content (N/Z) The Coulomb properties of the fragmenting source  An extra dimension Phase Transitions in Asymmetric Matter

25 Phase Transitions in Asymmetric Matter
Muller Serot PRC 1995 Neutron rich nuclei: isospin distillation Bonche Vautherin NPA 1984 (asymmetry rp/rn) Proton rich nuclei: vanishing limiting temperatures Phase Transitions in Asymmetric Matter

26 Bonche, Levit, Vautherin, NPA 436, 265 (1985)
Some History…. Bonche, Levit, Vautherin, NPA 436, 265 (1985) Temperature-dependent Hartree-Fock in a box: the nucleus in equilibrium with its surrounding vapor Proton rich nuclei: vanishing limiting temperatures limits of stability Phase Transitions in Asymmetric Matter

27 Hunting for Limiting Effects
M.Baldo et al. Phys. Rev. C (2004) Tc ≥ 15 MeV Testing microscopic calculations Phase Transitions in Asymmetric Matter

28 Conclusions…. For the most recent review: EPJA 30 (2006) Special Issue Freeze-out in the coexistence region: fragments, temperature, density The largest fragment as order parameter first or second order ? Limiting temperatures and the nucleus in equilibrium with its vapor ?

29 The 2000 Collaboration S.Bianchin, K.Kezzar, A.Le Fèvre, J.Lühning J.Lukasik, U.Lynen, W.F.J. Müller, H.Orth, A.N.Otte, H.Sann, C.Sfienti, C.Schwarz, W.Trautmann, J. Wiechula, M.Hellström, D.Henzlova, K.Sümmerer, H.Weick, P.Adrich, T.Aumann, H.Emling, Y.Leifels, R.Palit, H.Simon, H.Johansson, M.De Napoli, G.Imme', G.Raciti, E.Rapisarda, R.Bassini, C.Boiano,I.Iori, A.Pullia, W.G.Lynch, M.Mocko, M.B.Tsang, M.Wallace, G. Verde, C.O.Bacri, A.Boudard, J-E.Ducret, A. Lafriakh, E.Le Gentil, C.Volant, A. Chibihi, J. D. Frankland, T. Barczyk, J.Brzychczyk, J.Cibor, Z.Majka, A.Mykulyak, P.Pawlowski, A.Wieloch, B. Zwieglinski, B.Czech and A.S.Botvina

30 The phase diagram of strongly interacting matter
Source: NUCLEAR SCIENCE, A Teacher’s Guide to the Nuclear Science Wall Chart, Figure 9-2 The nuclear phase-diagram

31 Zbound .vs. Excitation Energy
A. Schüttauf et al., Nucl. Phys. A607(1996)457 Universality of fragment partition assures universality of Zbound.vs.,<Eo>/<Ao> correlation J. Pochodzalla et al., Phys. Rev. Lett. 75(1995)1040 Things that we know, we know

32 Neutrons Multiplicities
(N/Z) projectile  neutron initial (by P.Pawlowski) ● ● ● SMM ensemble calculations for γ=14, preliminary Things that we thought we didn’t know…

33 Bonche, Levit, Vautherin, NPA 436, 265 (1985)
Limiting Temperature Bonche, Levit, Vautherin, NPA 436, 265 (1985) Temperature-dependent Hartree-Fock in a box: the nucleus in equilibrium with its surrounding vapor J.B. Natowitz et al., Phys.Rev. C (2002) limits of stability Phase Transitions in Asymmetric Matter

34 Small Isotopic effects .vs. Isotopic temperature Small effects Small
Phase Transitions in Asymmetric Matter

35 Hunting for Limiting Effects
 Initial System  System at breakup Discriminant analysis J. Łukasik et al., NIMA 587(2008) 413 Heavy Residue disappearance  Limiting Temperature case Phase Transitions in Asymmetric Matter


Download ppt "…..viewed through ALADiN"

Similar presentations


Ads by Google