Presentation is loading. Please wait.

Presentation is loading. Please wait.

Non-linear photochromism in the near-field of a nanoplasmonic array

Similar presentations


Presentation on theme: "Non-linear photochromism in the near-field of a nanoplasmonic array"β€” Presentation transcript:

1 Non-linear photochromism in the near-field of a nanoplasmonic array
Christopher Otolski University of Kansas

2 Control on the smaller scale

3 Enhanced Electric Field
Christos Argyropoulos (UNL)

4 Diarylethene Photoswitch (DAE)
} Two-photon Excitation at 800nm

5 Experimental Design Absorbance 𝐴𝑏𝑠=βˆ’ log 𝑇 𝑖 𝑇 𝑓 400 500 600
Wavelength (nm) Wavelength (nm) 𝐴𝑏𝑠=βˆ’ log 𝑇 𝑖 𝑇 𝑓 Frame rate = 25 fps

6 Plasmonic Substrate Plasmonic Array Scanning Electron
Microscopy Atomic Force Microscopy Gold Nanorods 50 nm nm Herman Batelaan (UNL) Federico Capasso (Harvard) *Gold nanorod has plasmon resonance at 800nm

7 DAE on the plasmonic array
Total time 30 min

8 Glass vs plasmonic array substrate
Enhanced field profile

9 DAE on the Plasmonic array

10 Modeling DAE conversion
I 0 = initial intensity βˆ†N=change in molecuels N=number density Ξ”z=film thickness Οƒ 1PA =one photon cross section 𝜎 1𝑃𝐴 =1π‘₯ 10 βˆ’22 π‘π‘š 2 π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’ Οƒ 2PA = two photon cross section 𝜎 2𝑃𝐴 =5.5π‘₯ 10 βˆ’50 π‘π‘š 4 βˆ™π‘  π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’βˆ™π‘β„Žπ‘œπ‘‘π‘œπ‘›

11 Modeling DAE conversion
Grid: contains number of molecules βˆ†N=𝑁 𝐼 0 Δ𝑧( 𝜎 1𝑃𝐴 + 𝜎 2𝑃𝐴 β„Žπœ 𝐼 0 Enhanced field profile Grid size 110x195

12 Modeling DAE conversion
Grid: contains number of molecules Number of molecules Grid size 110x195

13 DAE on Plasmonic array

14 Anisotropy of the DAE thin film
Enhanced field Profile for 580nm probe Enhanced field Profile for 800nm pump 𝐸 𝐸 0 nm nm

15 DAE on Plasmonic array

16 Anisotropy of the DAE thin film
Enhanced field Profile for 800nm pump Enhanced field Profile for 580nm probe 𝐸 𝐸 0 nm nm

17 DAE on plasmonic array

18 Nanoplasmonic interactions
Electron Transfer Au Enhanced field Thermal

19 Conclusion Two-photon excitation of photoswitch in enhanced near-field. Modeling the absorbance decay shows excellent agreement with experiment. Spatial and polarization dependencies play an important roll in the enhanced near-field.

20 Acknowledgments Funding: Special Thanks: Herman Batelaan
Christos Argyropoulos Sasanka Ulapane Funding: This material is based upon work supported by the National Science Foundation under Award No. IIA‐ and IIA‐ Β 

21

22 Absorption spectrum of DAE thin film
𝝈 πŸπ‘·π‘¨ =πŸ” 𝒙 𝟏𝟎 βˆ’πŸπŸ• π’„π’Ž 𝟐 π’Žπ’π’π’†π’„π’–π’π’† 𝝈 πŸπ‘·π‘¨ =𝟏 𝒙 𝟏𝟎 βˆ’πŸπŸ π’„π’Ž 𝟐 π’Žπ’π’π’†π’„π’–π’π’†

23 DAE switching on Glass Conversion shown with 400nm laser irradiation

24 DAE on glass substrate White light probe only

25 1PE vs 2PE with DAE thin film
* 800nm exposure occurred for 15 minutes in both experiment and simulation

26 Conclusion 𝐸 𝐸 0 2 55 Thermal Heating Plasmonic Field-Enhancement
Hot electron transfer 𝐸 𝐸 55 Guillaume, B.; Quidant, R., Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, Dombi, P.; Hârl, A.; RÑcz, P.; MÑrton, I.; Trügler, A.; Krenn, J. R.; Hohenester, U., Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Letters 2013, 13 (2),

27 Transmission measurement on plasmonic array

28 1PE vs 2PE with DAE thin film
βˆ†πΌ=𝑁 𝐼 0 Δ𝑧( 𝜎 1𝑃𝐴 + 𝜎 2𝑃𝐴 β„Žπœ 𝐼 0 * 800nm exposure occurred for 15 minutes in both experiment and simulation

29 Plasmonics Baffou, G., Quidant, R. Chem. Soc. Rev., 2014, 43, 3898
Guidez, E., Aikens, C. Nanoscale, 2014, 6, 11512 Baffou, G., Quidant, R. Chem. Soc. Rev., 2014, 43, 3898

30 Scanning Electron Microscopy
Plasmonic Substrates Plasmonic Array Atomic Force Microscopy Scanning Electron Microscopy 15Β΅m Gold Nanorods 50 0Β΅m 0Β΅m 15Β΅m Missing nanorods Becker, et al., Ann. Phys., 2013, 525, L6–L11

31 Current works with Plasmons
Surface Enhanced Raman Spectroscopy (SERS) 1. Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P., SERS: Materials, applications, and the future. Materials Today 2012, 15 (1–2),

32 Current works with plasmons
Thermal Heating Plasmonic Field-Enhancement Hot electron transfer 𝐸 𝐸 55 Guillaume, B.; Quidant, R., Nanoplasmonics for chemistry. Chem. Soc. Rev. 2014, 43, Dombi, P.; Hârl, A.; RÑcz, P.; MÑrton, I.; Trügler, A.; Krenn, J. R.; Hohenester, U., Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Letters 2013, 13 (2),

33 Plasmonic field enhancement
Enhanced field profile 𝐸 𝐸 0 Thermal Heating Plasmonic Field-Enhancement Plasmonic Field-Enhancement Hot electron transfer Christos Argyropoulos (UNL)


Download ppt "Non-linear photochromism in the near-field of a nanoplasmonic array"

Similar presentations


Ads by Google