Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H

Similar presentations


Presentation on theme: "Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H"— Presentation transcript:

1 Weak Interactions and CO2  Microsolvation in the cis-1,2-difluoroethylene...CO2  Complex
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H. Pate,b William C. Trendell,a Sean A. Peeblesa a Department of Chemistry, Eastern Illinois University, Charleston, IL, USA b Department of Chemistry, University of Virginia, Charlottesville, VA, USA

2 Why CO2? Weak hydrogen bonding
Designing approaches to CO2 sequestration Properties of supercritical fluid Microsolvation Trifluoroethylene (TFE) Difluoroethylene (1,1-DFE) Fluoroethylene (FE) VF-CO2: C. L. Christenholz, et al., J. Phys. Chem. A, 118, (2014), 8765. DFE-CO2: A. M. Anderton, et al., J. Phys. Chem. A, 120, (2016), 247. TFE-CO2: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

3 Next Steps… Additional dimers Move towards larger clusters

4 Predicted DFE-CO2 Structure
Observed side-bonded structures Initial prediction for DFE-CO2 Gaussian 09: MP2/ G(2d,2p)

5 Oscilloscope (for data collection)
Tektronix TDS5054B 500 MHz Oscilloscope AFG3251 Function Generator (0-240 MHz) HP8673G MW Synthesizer GHz Molecular Expansion Vacuum Chamber 10 W Solid State Amp Picoammeter Gas sample injected Electron gun power Diffusion pump Supersonic nozzle Oscilloscope (for data collection) Reduced Bandwidth Chirped-Pulse Fourier-Transform Microwave (CP-FTMW) Spectrometer 480 MHz bandwidth, scan in 240 MHz steps Calculate absolute frequencies and assemble into full 11 GHz spectrum using LabVIEW Scan a full (10k average) spectrum in 1 day D. A. Obenchain, A. A. Elliott, A.L. Steber, R. A. Peebles, S. A. Peebles, C. J. Wurrey, G. A. Guirgis, J. Mol. Spectrosc., 261, (2010), 35.

6 Assignment Process Observed “Stacked” prediction “Side” prediction

7 Observed a c a c Predicted a c 10000 9000 8000 Fitted

8 Fitted Constants 0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz
0+ 0- A / MHz (14) (14) B / MHz (25) (21) C / MHz (14) (14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz (97) DE / MHz (19) N 51 RMS / kHz 2.2

9 Fitted Constants 0+ 0- A / MHz 3810.154(14) 3809.984(14) B / MHz
0+ 0- A / MHz (14) (14) B / MHz (25) (21) C / MHz (14) (14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz (97) DE / MHz (19) N 51 RMS / kHz 2.2

10 (Very) preliminary barrier = 42 cm-1
Fitted Constants 0+ 0- A / MHz (14) (14) B / MHz (25) (21) C / MHz (14) (14) DJ / kHz 3.490(10) 3.451(10) DJK / kHz 14.940(67) 15.216(60) DK / kHz -12.02(41) dJ / kHz 0.3322(70) dK / kHz -12.72(32) Fac / MHz (97) DE / MHz (19) N 51 RMS / kHz 2.2 (Very) preliminary barrier = 42 cm-1

11 Structure 0+ 0- A / MHz 3810.154(14) 3809.984(14) 3734.7 8002.3
0+ 0- A / MHz (14) (14) 3734.7 8002.3 B / MHz (25) (21) 1559.1 868.2 C / MHz (14) (14) 1403.4 783.2 Paa / u Å2 (2) (2) 274.5 582.1 Pbb / u Å2 83.259(2) 83.258(2) 85.6 63.2 Pcc / u Å2 49.382(2) 49.388(2) 49.7 0.0 ma / D 2.13(3) 2.2 0.02 mb / D 0.00 2.4 mc / D 1.13(4) 1.4 Gaussian 09: MP2/ G(2d,2p)

12 Structure Paa for DFE = 85.30534(4) u Å2 m for DFE = 2.42 D 0+ 0-
0+ 0- A / MHz (14) (14) 3734.7 8002.3 B / MHz (25) (21) 1559.1 868.2 C / MHz (14) (14) 1403.4 783.2 Paa / u Å2 (2) (2) 274.5 582.1 Pbb / u Å2 83.259(2) 83.258(2) 85.6 63.2 Pcc / u Å2 49.382(2) 49.388(2) 49.7 0.0 ma / D 2.13(3) 2.2 0.02 mb / D 0.00 2.4 mc / D 1.13(4) 1.4 mtot / D 2.41(5) Paa for DFE = (4) u Å2 m for DFE = 2.42 D Monomer rotational constants: N. C. Craig, et al, Int. J. Quantum Chem., 95, (2003), 837. Monomer dipole moment: V. W. Laurie, J. Chem. Phys., 34, (1961), 291. Gaussian 09: MP2/ G(2d,2p)

13 What’s next? Larger clusters…
(d) (e) (a) (b) (c) (i) (h) (f) (g) What’s next? Symmetry adapted perturbation theory (SAPT) Better understanding of energetics Larger clusters… Figure adapted from: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

14 Ees Eind Edisp Eex ESAPT EMP2 (BSSE)
X…CO [kJ mol-1 ] X = Ees Eind Edisp Eex ESAPT EMP2 (BSSE) FE (side) –8.33 (52.0%) –1.34 (8.3%) –6.36 (39.7%) 8.33 –7.70 –6.41 FE (top) –7.78 (49.7%) –1.30 (8.2%) –6.61 (42.1%) 8.03 –7.66 –6.30 FE (stacked) –6.65 (42.5%) –0.96 (6.1%) –8.02 (51.3%) 8.43 –7.19 –6.44 1,1-DFE (top) –5.69 (44.8%) –1.00 (7.8%) –6.02 (47.4%) 6.49 –6.22 –5.10 1,1-DFE (stacked) –4.43 (34.8%) –0.78 (6.1%) –7.50 (59.1%) 7.35 –5.35 –4.86 cis-1,2-DFE (side) –7.91 (51.0%) –1.34 (8.6%) –6.28 (40.5%) 7.99 –7.54 –6.33 cis-1,2-DFE (stacked) –7.29 (44.6%) –1.11 (6.8%) –7.96 (48.7%) 8.38 –7.97 –6.81 TFE (side) –7.61 (50.2%) –1.30 (8.5%) –6.23 (41.3%) 7.82 –7.32 –6.16 TFE (top) –6.11 (45.7%) –1.21 (9.0%) –6.07 (45.3%) 6.78 –6.61 –5.39 TFE (stacked) –5.84 (41.2%) –0.87 (6.1%) –7.47 (52.7%) 7.52 –6.66 –5.69 Table adapted from: R. Dorris, et al, J. Phys. Chem. A, 120, (2016), 7865.

15 Building up CO2 solvation shells
363 cm-1 0 cm-1 319 cm-1 24 cm-1 MP2/ G(2d,2p) using Gaussian 09

16 New Fluoroethylene-CO2 Scan – 1 million FIDs
FE-only lines cut

17 Top-stack Side-stack Stack Side-top A / MHz 1618.3 1734.3 2933.3 1626.8 B / MHz 1173.9 1107.4 643.5 922.9 C / MHz 881.2 808.4 609.4 588.8 Paa / u Å2 345.9 395.1 721.2 547.6 Pbb / u Å2 227.7 230.1 108.1 310.7 Pcc / u Å2 84.6 61.3 64.2 0.0 ma / D 1.1 0.8 0.03 mb / D 1.0 0.5 1.5 mc / D 0.7 DE / cm-1 24 319 363 (9) (4) (3) (3) (3) (3) Strongest Less Strong Weak (1) (1) (1) (7) (7) (7) Medium Stronger

18 Summary and Conclusions
cis-1,2-DFE-CO2 is nonplanar CO2 inversion motion Work using Meyer’s 1-dimensional model to determine barrier is in progress Two VF-CO2-CO2 trimers observed Nearly isoenergetic Tetramers?

19 Acknowledgements National Science Foundation Pate Group (UVa)
RUI ( ) RUI ( ) Pate Group (UVa) Eastern Illinois University spcat 

20 TRIMER2 – prelim fit A / /MHz (13) B / /MHz (10) C / /MHz (10) DJ / /MHz (41) DJK / /MHz (68) DK / /MHz (14) dj / /kHz (76) dk / /kHz (55) TRIMER1 – prelim fit A / /MHz (85) B / /MHz (35) C / /MHz (28) DJ / /MHz (10) DJK / /MHz (54) DK / /MHz (17) dj / /kHz (76) Trimer spectra uncut

21 I Side-top II End-top III Stack IV Side-end A / MHz 1618.3 1734.3 2933.3 1626.8 B / MHz 1173.9 1107.4 643.5 922.9 C / MHz 881.2 808.4 609.4 588.8 Paa / u Å2 345.9 395.1 721.2 547.6 Pbb / u Å2 227.7 230.1 108.1 310.7 Pcc / u Å2 84.6 61.3 64.2 0.0 ma / D 1.1 0.8 0.03 mb / D 1.0 0.5 1.5 mc / D 0.7 DE / cm-1 24 319 363

22 Trimer! I II Observed A / MHz 1623.4 1626.8 1552.10482(85) B / MHz
I II Observed A / MHz 1623.4 1626.8 (85) B / MHz 1171.2 922.9 (35) C / MHz 881.4 588.8 (28) Paa / u Å2 346.8 547.6 (25) Pbb / u Å2 226.6 310.7 (25) Pcc / u Å2 84.7 0.0 (25) ma / D 1.2 0.03 Strongest mb / D 1.0 1.5 Less Strong mc / D 0.7 Weak DE / cm-1 363 I II

23 Table 4 SAPT interaction energy decomposition resultsa (kJ mol–1) and percentage contribution to the attractive interaction (in parentheses) for fluorinated ethylene complexes with CO2. Also included are supermolecular interaction energies (EMP2) and pseudodiatomic approximation (EB) values (where available from experimental studies). See Figure 3 for structures. a Ees is the electrostatic, Eind the induction, Edisp the dispersion and Eex the exchange-repulsion contributions to the overall SAPT interaction energy (ESAPT). b EMP2 is the BSSE corrected supermolecular interaction energy: EMP2 = E(A…B) – E(A) – E(B), where the energy values are for the dimer and isolated monomers, respectively. c EB is an estimate of the binding energy from spectroscopic data using the pseudodiatomic approximation; see text for details. d Ref e Ref f Currently in progress in our lab; the observed rotational spectrum appears to be consistent with a stacked structure. g The trans-1,2-DFE…CO2 rotational spectrum is expected to be weak since it is formed from two non-polar monomers. h This work. X…CO2 X = 𝐸 es 𝐸 ind 𝐸 disp 𝐸 ex 𝐸 SAPT a EMP2b (BSSE) EBc VF (side) –8.33 (52.0%) –1.34 (8.3%) –6.36 (39.7%) 8.33 –7.70 –6.41 –5.80(20)d VF (top) –7.78 (49.7%) –1.30 (8.2%) –6.61 (42.1%) 8.03 –7.66 –6.30 –6.13(10)d VF (stacked) –6.65 (42.5%) –0.96 (6.1%) –8.02 (51.3%) 8.43 –7.19 –6.44 1,1-DFE (top) –5.69 (44.8%) –1.00 (7.8%) –6.02 (47.4%) 6.49 –6.22 –5.10 –5.80(1)e 1,1-DFE (stacked) –4.43 (34.8%) –0.78 (6.1%) –7.50 (59.1%) 7.35 –5.35 –4.86 cis-1,2-DFE (side) –7.91 (51.0%) –1.34 (8.6%) –6.28 (40.5%) 7.99 –7.54 –6.33 –f cis-1,2-DFE (stacked) –7.29 (44.6%) –1.11 (6.8%) –7.96 (48.7%) 8.38 –7.97 –6.81 – f trans-1,2-DFE (side) –7.61 (50.6%) –1.21 (8.1%) –6.23 (41.3%) 7.87 –7.18 –6.03 – g trans-1,2-DFE (top) –7.99 (49.5%) –1.42 (8.8%) –6.74 (41.7%) 8.28 –7.87 –6.45 TFE (side) –7.61 (50.2%) –1.30 (8.5%) 7.82 –7.32 –6.16 –7.12(15)h TFE (top) –6.11 (45.7%) –1.21 (9.0%) –6.07 (45.3%) 6.78 –6.61 –5.39 TFE (stacked) –5.84 (41.2%) –0.87 (6.1%) –7.47 (52.7%) 7.52 –6.66 –5.69


Download ppt "Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H"

Similar presentations


Ads by Google