Presentation is loading. Please wait.

Presentation is loading. Please wait.

Game Theory M.Pajhouh Niya M.Ghotbi

Similar presentations


Presentation on theme: "Game Theory M.Pajhouh Niya M.Ghotbi"— Presentation transcript:

1 Game Theory M.Pajhouh Niya M.Ghotbi
Quantitative Analysis for Decision Making M.Ghotbi M.Pajhouh Niya Abbas Keramati ( Assistant Professor) University of Tehran – MBA Fall 2008

2 Outline What is Game Theory? History of Game Theory Applications of Game Theory Key Elements of a game Types of games Nash Equilibrium (NE) Pure Strategies & Mixed Strategies 2players Zero-Sum games Title Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

3 What is Game Theory? DGDG Title
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. In strategic games, agents choose strategies that will maximize their return, given the strategies the other agents choose. The mathematics of human interactions DGDG

4 History of Game Theory DGDG Title
von Neumann wrote a key paper in 1928 1944: “Theory of Games and Economic Behavior” by von Neumann and Morgenstern 1950: Nash invents concept of Nash equilibrium Game theory booms after this… 1994: Harsanyi, Nash, and Selten win Nobel Prize in economics for game theory work Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

5 Applications of Game Theory
Title Mathematics Computer Science Biology Economics Political Science International Relations Philosophy Psychology Law Military Strategy Management Sports Game Playing Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

6 DGDG Key Elements of a game Title Players: Who is interacting?
Strategies: What are their options? Payoffs: What are their incentives? Information: What do they know? Rationality: How do they think? Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

7 Types of games DGDG Title
Cooperative or non-cooperative Zero sum and non-zero sum Simultaneous and sequential Perfect information and imperfect information Finite & Infinite Strategies Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

8 Pure Strategies DGDG Title
The upper value of the game is equal to the minimum of the maximum values in the columns. The lower value of the game is equal to the maximum of the minimum values in the rows. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

9 An Example: Title A B Y1 Y2 Minimum X1 10 6 X2 -12 7 Maximum Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

10 Mixed Strategies DGDG Title
A mixed strategy game exists when there is no saddle point. Each player will then optimize their expected gain by determining the percent of time to use each strategy. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

11 DGDG Nash Equilibrium (NE) Title
A player’s best strategy is that strategy that maximizes that player’s payoff (utility), knowing the strategy's of the other players. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

12 DGDG 2-players Zero-Sum games Title Penny Matching:
Each of the two players has a penny. Two players must simultaneously choose whether to show the Head or the Tail. Both players know the following rules: -If two pennies match (both heads or both tails) then player 2 wins player 1’s penny. -Otherwise, player 1 wins player 2’s penny. Title Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG Player 2 Tail Head -1 , 1 1 , -1 Player 1

13 DGDG Prisoner’s Dilemma Title
No communication: - Strategies must be undertaken without the full knowledge of what the other players (prisoners) will do. Players (prisoners) develop dominant strategies but are not necessarily the best one. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

14 Payoff Matrix for Prisoner’s Dilemma
Title Ted Confess Not Confess Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. Both get 5 years 1 year for Bill 10 years for Ted 10 years for Bill 1 year for Ted Both get 3 years Confess Bill Not Confess DGDG

15 DGDG An Example of Mixed Strategy game Title
B B believes B doesn’t believe A bluffs 1 A doesn’t bluff 0.5 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

16 DGDG Now let’s Play This Game Title Pirate Game
C B Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. A DGDG D E

17 Nash’s Equilibrium DGDG Title
This equilibrium occurs when each player’s strategy is optimal, knowing the strategy's of the other players. A player’s best strategy is that strategy that maximizes that player’s payoff (utility), knowing the strategy's of the other players. So when each player within a game follows their best strategy, a Nash equilibrium will occur. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

18 Definition: Nash Equilibrium
Title Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. Given others’ choices, player i cannot be better-off if she deviates from si* DGDG

19 Nash’s Equilibrium cont.: Bayesian Nash Equilibrium
The Nash Equilibrium of the imperfect-information game A Bayesian Equilibrium is a set of strategies such that each player is playing a best response, given a particular set of beliefs about the move by nature. All players have the same prior beliefs about the probability distribution on nature’s moves. So for example, all players think the odds of player 1 being of a particular type is p, and the probability of her being the other type is 1-p Title Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG

20 DGDG Title Refrences Dixit and Nalebuff: Thinking Strategically Dutta:
Strategies and Games: Theory and Practice Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas. DGDG


Download ppt "Game Theory M.Pajhouh Niya M.Ghotbi"

Similar presentations


Ads by Google