Download presentation
Presentation is loading. Please wait.
Published byMartha Thompson Modified over 6 years ago
1
The Application of Redox-Active Ligands in Homogeneous Catalysis
Ryan J. Trovitch DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY
2
Outline Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly Active Manganese Hydrosilylation Catalyst Lecture 3 - Hydrosilylation and Beyond: Expanding the Scope of Redox-Active Ligand Assisted Catalysts
3
Dewar-Chatt Model for Ethylene Coordination
Neutral Dialkyl σ-donation π-backbonding Although coordinated ethylene may react like a dialkyl ligand, it is not redox-active since its π* orbital is not populated!
4
Conjugated Diene Ligands
Neutral Enediyl η4-1,3-Butadiene coordination: Can be considered a redox-active ligand (singlet dianion shown) if electrons are fully transferred to Ψ3. This is different than backbonding!
5
(Triphos)Fe(COT) “the COT is fluxional and presumably η4-coordinated”
Felkin, H.; Lednor, P. W.; Normant, J.-M.; Smith, R. A. J. J. Organomet. Chem. 1978, 157, C64-C66.
6
(Triphos)Fe(COT) “the COT is fluxional and presumably η4-coordinated”
Felkin, H.; Lednor, P. W.; Normant, J.-M.; Smith, R. A. J. J. Organomet. Chem. 1978, 157, C64-C66. Can (Triphos)Fe(COT) be prepared from cheaper starting materials than Fe(COT)2? COT has been shown to coordinate to transition metals in an η2-, η3-, η4-, η5-, η6-, and η8-fashion. What is the true hapticity of the COT ligand? What is the correct electronic structure description of (Triphos)Fe(COT)?
7
Dihalide Starting Materials
1H NMR (THF-d8, 23˚C, ppm): 98.38 (CH2), (CH2), 34.24 (CH2), (CH2) Magnetic Susceptibility (Gouy Balance): μeff = 4.8 μB [HS Fe(II)] 1H NMR (THF-d8, 23˚C, ppm): (CH2), (CH2), (CH2), (CH2) Magnetic Susceptibility (Gouy Balance): μeff = 4.3 μB [IS Fe(III)]
8
(Triphos)FeBr3 Magnetic Susceptibility (Gouy Balance):
μeff = 5.6 μB [HS Fe(III)]
9
(Triphos)FeBr3 Magnetic Susceptibility (Gouy Balance):
μeff = 5.6 μB [HS Fe(III)] 450 Hz at ½ height 31P NMR
10
Reduction Under N2 Prepared from (Triphos)FeCl3 and
(Triphos)FeBr3 (also with K0) Addition of Triphos improves yield, complicates purification Connectivity/Geometry Confirmed by XRD LS Fe(0) 31P NMR
11
(Triphos)Fe(COT) 1H NMR (C6D6, 23˚C, ppm): 4.93 (s, COT)
31P NMR (C6D6, 23˚C, ppm): (t), (d) Diamagnetic…. Low-spin Fe(0)?
12
(Triphos)Fe(COT) Fe(1)-P(1) 2.1903(4) Fe(1)-P(2) 2.1758(4) Fe(1)-P(3)
2.1913(4) Fe(1)-C(40) 2.2170(14) Fe(1)-C(41) 2.0332(14) Fe(1)-C(42) 2.0302(14) Fe(1)-C(35) 2.1978(14) C(40)-C(41) 1.432(2) C(41)-C(42) 1.402(2) C(42)-C(35) P(2)-Fe(1)-C(35) 88.79(4) P(2)-Fe(1)-C(40) 171.60(4) P(1)-Fe(1)-P(3) 98.434(15)
13
A Closer Look 1.402(2) 1.432(2) 1.432(2) 1.448(2) 1.446(2) 1.358(2)
1.355(2) 1.425(2)
14
A Closer Look 1.402(2) 1.432(2) 1.432(2) 1.448(2) 1.446(2) 1.358(2) 1.355(2) 1.425(2) The solid-state structure suggests that this complex features a COT radical monoanion that is antiferromagnetically coupled to a low-spin Fe(I) center.
15
A Well-Understood Non-Innocent Chelate
Neutral Radical Monoanion Dianion
16
A Well-Understood Non-Innocent Chelate
Neutral Radical Monoanion Dianion Will 2,2’-bipyridine accept one electron upon coordinating to (Triphos)Fe? Will the resulting product possess the same electronic structure as (Triphos)Fe(COT)?
17
(Triphos)Fe(bpy) 31P NMR (C6D6, 23˚C, ppm): 112.93 (t), 91.59 (d)
Diamagnetic…. Low-spin Fe(0)?
18
(Triphos)Fe(bpy) 31P NMR (C6D6, 23˚C, ppm): 112.93 (t), 91.59 (d)
Diamagnetic…. Low-spin Fe(0)? Fe(1)-P(1) 2.1628(8) Fe(1)-P(2) 2.1608(8) Fe(1)-P(3) 2.2045(8) Fe(1)-N(1) 1.956(2) Fe(1)-N(2) 1.936(2) N(1)-C(5) 1.383(3) N(2)-C(6) 1.399(3) C(5)-C(6) 1.420(4) P(1)-Fe(1)-P(3) 116.38(3) N(2)-Fe(1)-P(1) 104.83(7) N(1)-Fe(1)-P(1) 95.43(7) P(2)-Fe(1)-P(1) 85.02(3)
19
(Triphos)Fe(bpy) 1.391(3) Å 1.431(3) Å 1.388(3) Å
Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48,
20
(Triphos)Fe(bpy) XRD 1.391(3) Å 1.431(3) Å 1.388(3) Å
Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48, XRD 1.399(3) Å 1.420(4) Å 1.383(3) Å
21
(Triphos)Fe(bpy) XRD 1.372(3) Å 1.405(3) Å 1.336(3) Å 1.363(3) Å
1.391(3) Å 1.427(3) Å 1.431(3) Å 1.388(3) Å 1.428(3) Å 1.338(3) Å 1.366(3) Å 1.374(3) Å 1.403(4) Å Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48, 1.366(4) Å 1.408(4) Å 1.366(4) Å XRD 1.336(3) Å 1.399(3) Å 1.401(4) Å 1.420(4) Å 1.383(3) Å 1.409(4) Å 1.361(3) Å 1.355(4) Å 1.360(4) Å 1.412(4) Å
22
(Triphos)Fe(bpy) XRD Low-spin Fe(I) antiferromagnetically
1.372(3) Å 1.405(3) Å 1.336(3) Å 1.363(3) Å 1.391(3) Å 1.427(3) Å 1.431(3) Å 1.388(3) Å 1.428(3) Å 1.338(3) Å 1.366(3) Å 1.374(3) Å 1.403(4) Å Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48, 1.366(4) Å 1.408(4) Å 1.366(4) Å XRD 1.336(3) Å 1.399(3) Å 1.401(4) Å Low-spin Fe(I) antiferromagnetically coupled to (bpy•-) 1.420(4) Å 1.383(3) Å 1.409(4) Å 1.361(3) Å 1.355(4) Å 1.360(4) Å 1.412(4) Å
23
(Triphos)Fe(bpy) Electrochemistry XRD Low-spin Fe(I) 1.420(4) Å
1.399(3) Å Low-spin Fe(I) antiferromagnetically coupled to (bpy•-) 1.420(4) Å 1.383(3) Å
24
(Triphos)Fe(bpy) Electrochemistry DFT XRD Low-spin Fe(I)
1.399(3) Å Low-spin Fe(I) antiferromagnetically coupled to (bpy•-) 1.420(4) Å 1.383(3) Å
25
Mössbauer Comparison δ = 0.013 mm/s ΔEQ = 2.19 mm/s δ = 0.106 mm/s
26
Mössbauer Comparison Low-spin Fe(I) antiferromagnetically
coupled to (COT•-) δ = mm/s ΔEQ = 1.08 mm/s δ = mm/s ΔEQ = 2.19 mm/s δ = mm/s ΔEQ = 1.16 mm/s
27
EPR Confirmation Triplet eigenstates: Ψ1, Ψ2, Ψ3 Singlet eigenstate:
Ψ4 Low-spin Fe(I) antiferromagnetically coupled to (COT•-) σ = 2.3% Consistent with a strong dipolar interaction between two unpaired spins that are within close proximity of one another.
28
COT as a Redox-Active Ligand
~ 40 η4-COT complexes characterized by XRD. Several feature a disordered COT ligand (unreliable C-C distances) Do any possess a COT radical anion?
29
COT as a Redox-Active Ligand
~ 40 η4-COT complexes characterized by XRD. Several feature a disordered COT ligand (unreliable C-C distances) Do any possess a COT radical anion? ? 1.415(5) 1.382(6) 1.429(6) μeff = 2.87 μB Lavallo, V.; El-Batta, A.; Bertrand, G.; Grubbs, R. H. Angew. Chem. Int. Ed. 2011, 50,
30
COT as a Redox-Active Ligand
~ 40 η4-COT complexes characterized by XRD. Several feature a disordered COT ligand (unreliable C-C distances) Do any possess a COT radical anion? ? 1.437(4) 1.398(4) 1.429(4) Brennessel, W. W.; Young, Jr., V. G.; Ellis, J. E. Angew. Chem. Int. Ed. 2002, 41,
31
Outline Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly Active Manganese Hydrosilylation Catalyst Lecture 3 - Hydrosilylation and Beyond: Expanding the Scope of Redox-Active Ligand Assisted Catalysts
32
Traditional Coordination Compounds
Precious Metals Two Electron Reaction Pathways Observed
33
Traditional Coordination Compounds
Precious Metals Two Electron Reaction Pathways Observed First Row Metals One Electron Reaction Pathways Observed
34
Overcoming Radical Pathways
Precatalyst Preparation: Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, Hydrogenation:
35
Overcoming Radical Pathways
Precatalyst Preparation: Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, Hydrogenation: [2π+2π] Cyclization: Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128,
36
PDI Ligand Redox Activity
Neutral Radical Monoanion Dianion Lowest energy PDI π* orbital is often close in energy to the metal d-obritals.
37
How Does Redox-Activity Help?
[2π+2π] Cyclization: Reductive Elimination Ligand Substitution Reductive C-C Bond Formation Iron Center Remains Divalent! Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794.
38
Outline Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly Active Manganese Hydrosilylation Catalyst Lecture 3 - Hydrosilylation and Beyond: Expanding the Scope of Redox-Active Ligand Assisted Catalysts
39
Catalyst Design Inspiration
Donor Substituted Redox-Active Ligands Might: - Obviate the Need for Steric Bulk in Catalyst Design - Improve Activity by Stabilizing High Energy Catalytic Intermediates - Participate in Bifunctional Catalysis
40
Chelate Preparation Hagit Ben-Daat
41
Chelate Preparation - Easy to Prepare - Highly Modular Hagit Ben-Daat
42
Rh Diamagnetic, Well-Investigated
1H and 13C NMR indicate top to bottom ligand equivalence Hagit Ben-Daat
43
Rh Backbonding Over Redox-Activity
Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.884(3) Rh(1)-N(3) Rh(1)-Cl(1) 2.3476(9) N(1)-C(2) 1.316(4) N(3)-C(8) 1.303(4) C(2)-C(3) 1.452(5) C(7)-C(8) 1.467(4) N(1)-Rh(1)-N(2) 79.76(11) N(1)-Rh(1)-N(3) 159.19(11) N(2)-Rh(1)-N(3) 79.44(11) N(2)-Rh(1)-Cl(1) 178.68(8) Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.889(3) Rh(1)-N(3) 2.032(3) Rh(1)-Cl(1) 2.3621(9) N(1)-C(2) 1.316(5) N(3)-C(8) 1.303(5) C(2)-C(3) 1.462(5) C(7)-C(8) 1.475(5) N(1)-Rh(1)-N(2) 79.27(13) N(1)-Rh(1)-N(3) 159.13(12) N(2)-Rh(1)-N(3) 79.86(7) N(2)-Rh(1)-Cl(1) 176.92(9) Hagit Ben-Daat
44
Rh Backbonding Over Redox-Activity
Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.884(3) Rh(1)-N(3) Rh(1)-Cl(1) 2.3476(9) N(1)-C(2) 1.316(4) N(3)-C(8) 1.303(4) C(2)-C(3) 1.452(5) C(7)-C(8) 1.467(4) N(1)-Rh(1)-N(2) 79.76(11) N(1)-Rh(1)-N(3) 159.19(11) N(2)-Rh(1)-N(3) 79.44(11) N(2)-Rh(1)-Cl(1) 178.68(8) Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.889(3) Rh(1)-N(3) 2.032(3) Rh(1)-Cl(1) 2.3621(9) N(1)-C(2) 1.316(5) N(3)-C(8) 1.303(5) C(2)-C(3) 1.462(5) C(7)-C(8) 1.475(5) N(1)-Rh(1)-N(2) 79.27(13) N(1)-Rh(1)-N(3) 159.13(12) N(2)-Rh(1)-N(3) 79.86(7) N(2)-Rh(1)-Cl(1) 176.92(9) Due to radial expansion (vs. first row metals), Rh d-orbitals backbond efficiently into the π* orbital of PDI, destabilizing it such that it remains unoccupied. Hagit Ben-Daat
45
Enabling Amine Coordination
Variable temperature NMR spectroscopy revealed slow arm exchange at ambient temperature. Hagit Ben-Daat
46
Enabling Amine Coordination
Variable temperature NMR spectroscopy revealed that chelate arm exchange is fast at ambient temperature. Hagit Ben-Daat
47
Crystallographic Evidence
Rh(1)-N(1) 2.016(2) Rh(1)-N(2) 1.902(2) Rh(1)-N(3) 2.084(2) Rh(1)-N(4) 2.143(2) N(1)-C(2) 1.309(3) N(3)-C(8) 1.305(3) C(2)-C(3) 1.460(4) C(7)-C(8) 1.475(4) N(1)-Rh(1)-N(2) 79.52(9) N(1)-Rh(1)-N(3) 157.74(9) N(2)-Rh(1)-N(3) 78.49(9) N(2)-Rh(1)-N(4) 173.11(9) κ4-N,N,N,N-PDI coordination observed Hagit Ben-Daat
48
Stronger Field Chelate Arms
31P NMR (DMSO-d6, ppm): (d, JRhP = 135 Hz) Hagit Ben-Daat
49
Stronger Field Chelate Arms
31P NMR (DMSO-d6, ppm): (d, JRhP = 135 Hz) 31P NMR (DMSO-d6, ppm): (d, JRhP = 135 Hz) Hagit Ben-Daat
50
Stronger Field Chelate Arms
31P NMR (DMSO-d6, ppm): ppm (d, JRhP = 138 Hz) Hagit Ben-Daat
51
Stronger Field Chelate Arms
31P NMR (DMSO-d6, ppm): ppm (d, JRhP = 138 Hz) 1H NMR (DMSO-d6, ppm): (m, COD), 2.37 (m, COD) 31P NMR (DMSO-d6, ppm): (d, JRhP = 138 Hz) Hagit Ben-Daat
52
Stronger Field Chelate Arms
31P NMR (DMSO-d6, ppm): ppm (d, JRhP = 138 Hz) κ5-PDI coordination observed for Et- and Pr- bridged PDI chelates 1H NMR (DMSO-d6, ppm): (m, COD), 2.37 (m, COD) 31P NMR (DMSO-d6, ppm): (d, JRhP = 138 Hz) Hagit Ben-Daat
53
[(Ph2PPrPDI)Rh][(COD)RhCl2]
Rh(1)-N(1) 2.029(3) Rh(1)-N(2) 1.926(3) Rh(1)-N(3) 2.046(3) Rh(1)-P(1) 2.2926(9) Rh(1)-P(2) 2.3101(10) N(1)-C(2) 1.335(5) N(3)-C(8) 1.322(5) C(2)-C(3) 1.427(5) C(7)-C(8) 1.435(5) N(1)-Rh(1)-N(2) 78.95(12) N(1)-Rh(1)-N(3) 157.10(12) N(2)-Rh(1)-P(1) 119.79(8) N(2)-Rh(1)-P(2) 141.15(8) P(1)-Rh(1)-P(2) 99.06(3) Hagit Ben-Daat
54
[(Ph2PPrPDI)Rh][(COD)RhCl2]
Rh(1)-N(1) 2.029(3) Rh(1)-N(2) 1.926(3) Rh(1)-N(3) 2.046(3) Rh(1)-P(1) 2.2926(9) Rh(1)-P(2) 2.3101(10) N(1)-C(2) 1.335(5) N(3)-C(8) 1.322(5) C(2)-C(3) 1.427(5) C(7)-C(8) 1.435(5) N(1)-Rh(1)-N(2) 78.95(12) N(1)-Rh(1)-N(3) 157.10(12) N(2)-Rh(1)-P(1) 119.79(8) N(2)-Rh(1)-P(2) 141.15(8) P(1)-Rh(1)-P(2) 99.06(3) Increased covalency, ligand remains redox-innocent! Hagit Ben-Daat
55
Summary Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? COT, Bpy, and PDI all behave as redox-active ligands
56
Summary Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? COT, Bpy, and PDI all behave as redox-active ligands PDI ligands can aid catalysis by reversibly storing electrons
57
Summary Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? COT, Bpy, and PDI all behave as redox-active ligands PDI ligands can aid catalysis by reversibly storing electrons Electron transfer not observed for Rh due to radial expansion
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.