Download presentation
Presentation is loading. Please wait.
1
Chemical Equilibrium Chapter 15
2
Chemical Equilibrium A state of balance dynamic static
3
Chemical Equilibrium A state of balance
Static- two sides pulling with equal force results in an object at rest Dynamic- rate of cars leaving equals rate of cars entering so no net change in the number of cars in the city Other examples of dynamic equilibrium include vapor in equilibrium with liquid and solid in equilibrium with liquid. Chemical- opposing reactions are proceeding at equal rates and there is no net change in the concentrations of reactants and products.
5
Physical equilibrium Chemical equilibrium
Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant Physical equilibrium H2O (l) H2O (g) Chemical equilibrium N2O4 (g) 2NO2 (g) 15.1
6
N2O4 (g) 2NO2 (g) No net change in concentrations of reactants and products Forward and reverse rates are equal Reaction has NOT stopped For equilibrium to occur, neither reactants nor products can escape from the system At equilibrium, a particular ratio of the concentration terms equals a constant
7
kf kr [NO2]2 [N2O4] = = Keq N2O4 (g) 2NO2 (g) Forward reaction:
Rate law: Rate = kf [N2O4] Reverse reaction: 2 NO2 (g) N2O4 (g) Rate law: Rate = kr [NO2]2 Therefore, at equilibrium Ratef = Rater kf [N2O4] = kr [NO2]2 Rewriting this, it becomes kf kr [NO2]2 [N2O4] = = Keq
8
N2O4 (g) 2NO2 (g) equilibrium equilibrium equilibrium Start with NO2
Start with NO2 & N2O4 15.1
9
constant 15.1
10
Equilibrium Will N2O4 (g) 2NO2 (g) K = [NO2]2 [N2O4] = 4.63 x 10-3
aA + bB cC + dD K = [C]c[D]d [A]a[B]b Law of Mass Action Equilibrium Will K >> 1 Lie to the right Favor products K << 1 Lie to the left Favor reactants 15.1
11
Homogenous equilibrium applies to reactions in which all reacting species are in the same phase.
N2O4 (g) NO2 (g) Kp = NO2 P2 N2O4 P Kc = [NO2]2 [N2O4] In most cases Kc Kp aA (g) + bB (g) cC (g) + dD (g) Kp = Kc(RT)Dn Dn = moles of gaseous products – moles of gaseous reactants = (c + d) – (a + b) 15.2
12
Homogeneous Equilibrium
CH3COOH (aq) + H2O (l) CH3COO- (aq) + H3O+ (aq) [CH3COO-][H3O+] [CH3COOH][H2O] Kc = ‘ [H2O] = constant [CH3COO-][H3O+] [CH3COOH] = Kc [H2O] ‘ Kc = General practice not to include units for the equilibrium constant. 15.2
13
The equilibrium concentrations for the reaction between carbon monoxide and molecular chlorine to form COCl2 (g) at 740C are [CO] = M, [Cl2] = M, and [COCl2] = 0.14 M. Calculate the equilibrium constants Kc and Kp. CO (g) + Cl2 (g) COCl2 (g) [COCl2] [CO][Cl2] = 0.14 0.012 x 0.054 Kc = = 220 Kp = Kc(RT)Dn Dn = 1 – 2 = -1 R = T = = 347 K Kp = 220 x ( x 347)-1 = 7.7 15.2
14
The equilibrium constant Kp for the reaction
is 158 at 1000K. What is the equilibrium pressure of O2 if the PNO = atm and PNO = atm? 2NO2 (g) NO (g) + O2 (g) 2 Kp = 2 PNO PO PNO PO 2 = Kp PNO PO 2 = 158 x (0.400)2/(0.270)2 = 347 atm 15.2
15
Heterogenous equilibrium applies to reactions in which reactants and products are in different phases. CaCO3 (s) CaO (s) + CO2 (g) Kc = ‘ [CaO][CO2] [CaCO3] [CaCO3] = constant [CaO] = constant Kc x ‘ [CaCO3] [CaO] Kc = [CO2] = Kp = PCO 2 The concentration of solids and pure liquids are not included in the expression for the equilibrium constant. 15.2
16
does not depend on the amount of CaCO3 or CaO
CaCO3 (s) CaO (s) + CO2 (g) PCO 2 = Kp PCO 2 does not depend on the amount of CaCO3 or CaO 15.2
17
Consider the following equilibrium at 295 K:
The partial pressure of each gas is atm. Calculate Kp and Kc for the reaction? NH4HS (s) NH3 (g) + H2S (g) Kp = P NH3 H2S P = x = Kp = Kc(RT)Dn Kc = Kp(RT)-Dn Dn = 2 – 0 = 2 T = 295 K Kc = x ( x 295)-2 = 1.20 x 10-4 15.2
18
‘ ‘ ‘ ‘ ‘ Kc = [C][D] [A][B] Kc = [E][F] [C][D] Kc A + B C + D Kc
C + D E + F [E][F] [A][B] Kc = A + B E + F Kc Kc = Kc ‘ x If a reaction can be expressed as the sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions. 15.2
19
‘ N2O4 (g) 2NO2 (g) 2NO2 (g) N2O4 (g) = 4.63 x 10-3 K = [NO2]2 [N2O4]
= 216 When the equation for a reversible reaction is written in the opposite direction, the equilibrium constant becomes the reciprocal of the original equilibrium constant. 15.2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.