Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quadratic Functions Unit Objectives: Solve a quadratic equation.

Similar presentations


Presentation on theme: "Quadratic Functions Unit Objectives: Solve a quadratic equation."β€” Presentation transcript:

1 Quadratic Functions Unit Objectives: Solve a quadratic equation.
Graph/Transform quadratic functions with/without a calculator Identify function attributes: domain, range, vertex, line of symmetry, number and nature of roots, maximum/minimum values. Model situations with quadratic functions. Today’s Objective: Identify attributes and graph quadratic functions

2

3 Quadratic Function: 𝑓 π‘₯ =π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐, where π‘Žβ‰ 0 𝑦= π‘₯ 2 Graph:
Parabola Parent function/equation: Vertex Point where graph changes direction Minimum or maximum Vertex Form: 𝑦=Β±π‘Ž (π‘₯βˆ’β„Ž) 2 +π‘˜ Vertex: (h, k) Axis of Symmetry (line) Divides the graph into 2 mirror images x = h

4 Transformation of 𝑓 π‘₯ = π‘₯ 2
Translation: Vertical Translation: Horizontal Up k units Right h units 𝑦= π‘₯ 2 +π‘˜ 𝑦= (π‘₯βˆ’β„Ž) 2 Down k units Left h units 𝑦= π‘₯ 2 βˆ’π‘˜ 𝑦= (π‘₯+β„Ž) 2 Reflection Dilation: 𝑦=π‘Ž π‘₯ 2 Stretch: Across x-axis 𝑦=βˆ’ π‘₯ 2 π‘Ž>1 Vertex Form: 𝑦=Β±π‘Ž( π‘₯βˆ’β„Ž) 2 +π‘˜ Compression: 0<π‘Ž<1

5 Graphing a Quadratic Function in vertex form
𝑦= (π‘₯βˆ’3) 2 +2 Vertex: (3, 2) Plot the vertex Find and plot two points to the right of vertex. Plot the point across axis of symmetry. Sketch the curve. Units right of vertex x Units up from vertex 1 2 π‘₯ 2 1 Axis of Symmetry: Domain: Range: 4 π‘₯=3 3 key-points All Real Numbers 𝑦β‰₯2

6 Graphing a Quadratic Function in vertex form
𝑦= 2π‘₯ 2 Vertex: (0, 0) Plot the vertex Find and plot two points to the right of vertex. Plot the point across axis of symmetry. Sketch the curve. Units right of vertex x Units up from vertex 1 2 2π‘₯ 2 2 Axis of Symmetry: Domain: Range: π‘₯=0 8 3 key-points All Real Numbers 𝑦β‰₯0

7 Graphing a Quadratic Function in vertex form
𝑦= βˆ’ (π‘₯+4) 2 βˆ’3 Vertex: (βˆ’4, βˆ’3) Plot the vertex Find and plot two points to the right of vertex. Plot the point across axis of symmetry. Sketch the curve. Units right of vertex x Units up from vertex 1 2 βˆ’ π‘₯ 2 βˆ’ 1 2 Axis of Symmetry: Domain: Range: βˆ’2 π‘₯=βˆ’4 All Real Numbers π‘¦β‰€βˆ’3

8 Writing a Quadratic function: vertex form 𝑦=Β±π‘Ž (π‘₯βˆ’β„Ž) 2 +π‘˜
Identify the Vertex: (βˆ’2, βˆ’7) 𝑦=π‘Ž (π‘₯+2) 2 βˆ’7 Finding dilation factor: Choose another known point and solve for a. βˆ’5=π‘Ž (βˆ’1+2) 2 βˆ’7 (-1, -5) 2=π‘Ž 𝑦=2 (π‘₯+2) 2 βˆ’7 (-2, -7)

9 Writing a Quadratic function: vertex form 𝑦=Β±π‘Ž (π‘₯βˆ’β„Ž) 2 +π‘˜
(3, 9) Identify the Vertex: (3, 9) 𝑦=π‘Ž (π‘₯βˆ’3) 2 +9 (5, 7) Finding dilation factor: Choose another known point and solve for a. 7=π‘Ž (5βˆ’3) 2 +9 βˆ’2=4π‘Ž Practice W.S.: Graphing Quadratic Functions in Vertex Form βˆ’ =π‘Ž 𝑦= βˆ’ (π‘₯βˆ’3) 2 +9


Download ppt "Quadratic Functions Unit Objectives: Solve a quadratic equation."

Similar presentations


Ads by Google