Download presentation
Presentation is loading. Please wait.
1
Experimental studies on the KbarN interaction
- Recent Topics from J-PARC - F. Sakuma, RIKEN on behalf of the J-PARC E15/E31/E57/E62 collaboration SNP2017, Mar , 2017, Osaka
2
Physics Motivation provide new insight on M-B interaction in media
Meson properties change in nuclear media? KbarN interaction : attractive in I=0 A good probe for low energy QCD W.Weise NPA553, 59 (1993). 1 2 3 provide new insight on M-B interaction in media
3
Investigation of KbarN int. @ J-PARC
S.Ohnish et al.,PRC93(2016) KbarN Calculation on KbarN amplitude in I = 0 ? M. Bazzi et al., (SIDDHARTA Coll.), Phys. Lett. B704(2011)113 KbarNN: E27/E15 L(1405): E31 K-atom: E62/E57 KN pS 𝐼= 1 2 , 𝐽 𝑃 = 0 − - Sensitive in different energy region & isospin - expected to be produced as a L(1405)p doorway
4
Kaonic-Atom Measurements
5
KbarN Interaction at the threshold
Low-energy K-p scattering Kaonic hydrogen X-ray M. Bazzi et al.,(SIDDHARTA Coll.), Phys. Lett. B704(2011)113 S.Ohnish et al.,PRC93(2016) KbarN
6
KbarN Interaction at the threshold
Low-energy K-p scattering Kaonic hydrogen X-ray isospin dependent KbarN J-PARC E57: kaonic deuterium with SDD S.Ohnish et al.,PRC93(2016) J.Zmeskal J-PARC E62: kaonic 3He/4He with TES KbarN S.Okada
7
KbarN Interaction via Kaonic-atoms
S.Okada, 21th J-PARC PAC
8
E62: K-nucleus Potential
S.Okada, 21th J-PARC PAC
9
E62: K3/4HeX with TES S.Okada, 21th J-PARC PAC
10
Precise measurement @ SIDDHARTA
E57: KdX Measurement K-p scattering length Precise SIDDHARTA the strong‐int. shift and width of the kaonic hydrogen 1s K-d scattering length NO experimental results due to the difficulty of the X‐ray measurement missing information in the low-energy KbarN int. KpX J.Zmeskal, 20th J-PARC PAC
11
Commissioning Runs Scheduled in 2018 Successfully performed in 2016
S.Okada, 23th J-PARC PAC Successfully performed in 2016 E62: TES under beam-condition E57: K-Li La with prototype SDD J.Zmeskal, 23th J-PARC PAC Scheduled in 2018 E62: production E57: start from K-p before K-d
12
L(1405) Measurement
13
KbarN Interaction below the threshold
KbarN int. plays an important role for L(1405) L(1405) or L(1420) Depending on KbarN int. model 𝐽 𝑃 = − Moriya et al., (CLAS Coll.), Phys. Rev. Lett. 112(2014)082004 s KbarN molecular from LQCD J.M.M. Hall et al., Phys. Rev. Lett. 114(2015) ? S.Ohnish et al.,PRC93(2016) KbarN
14
Spectral Shape of L(1405)? g/p-induced experiments
Spectral shape is still controversial 𝑝𝑝→ 𝐾 + 𝑝 𝜋 − Σ + , 𝐾 + 𝑝 𝜋 + Σ − 𝛾𝑝→ 𝐾 + 𝜋 − Σ + , 𝐾 + 𝜋 0 Σ 0 , 𝐾 + 𝜋 + Σ − CLAS collaboration: PRC87, HADES collaboration: PRC87,
15
Measurement of L(1405) line shape via KbarNpS
J-PARC E31 Experiment Measurement of L(1405) line shape via KbarNpS K- d n 𝑲 𝝅 ∓,𝟎 𝜮 ±,𝟎 𝑵 Inoue d(K-,n)pS reactions at qn~0 degree to enhance S-wave KbarNpS reaction K- n d L(1405) 1 GeV/c ~1.25 GeV/c ~0.25 GeV/c S p Decomposition of I=0 and 1 amplitudes by identifying final state L(1405) I = 0 S wave 𝝅 ± 𝚺 ∓ , 𝝅 𝟎 𝚺 𝟎 S(1385) I = 1 P wave 𝝅 ± 𝚺 ∓ , 𝝅 𝟎 𝚲 Non-resonant I = 0,1 S,P,D,…
16
I = 0, 1 Mode (p±S∓) preliminary
c.f. Faddeev calc. (AGS) S.Ohnishi et al., PRC93(2016)025207 K-p w/ angular dependence preliminary interference between the I = 0 and 1 terms of the pS scattering amplitudes is observed
17
Comparison between I = 0, 1 (p±S∓) & I = 1 (p-S0)
preliminary I = 0 dominant below the threshold |T(0)|2/|T(1)|2 ~ 100
18
I = 0 Mode (p0S0) preliminary The pure I = 0 channel is observed
For further statistics: E31-2nd will be performed in May-Jun. 2017
19
Kaonic-Nuclei Searches
20
Y.Akaishi & T.Yamazaki, PLB535, 70(2002).
Kaonic Nuclei Bound states of nucleus and anti-kaon Predicted as a consequence of attractive KbarN interaction in I=0 the simplest kaonic nuclei: 𝐼= 1 2 , 𝐽 𝑃 = 0 − KbarN ? Y.Akaishi & T.Yamazaki, PLB535, 70(2002).
21
Theoretical Calculations on KbarNN
KbarN int. Chiral SU(3) (energy dependent) Phenomenological (energy independent) Method Variational Faddeev Barnea, Gal, Liverts Dote, Hyodo, Weise Ikeda, Kamano, Sato Yamazaki, Akaishi Wyceck, Green Shevchenko, Gal, Mares Ikeda, Sato B (MeV) 16 17-23 9-16 48 40-80 50-70 60-95 G (MeV) 41 40-70 34-46 61 40-85 90-110 45-80 KbarN interaction model: Chiral SU(3) [energy dependent] Phenomenological [energy independent] Calculation method: Almost the same results = depending on KbarN interaction B.E. ~ 20 MeV B.E. ~ MeV
22
Pioneering Experiments on KbarNN
B.E. = 103MeV G = 118MeV B.E. = 115MeV G = 67MeV “K-pp”Lp? Exp/Sim PRL94(2005)212303 PRL104(2010)132502 6Li+7Li+12C(stopped K-, Lp) p + p (L + p) GeV 2NA followed by FSI? PRC74(2006)025206 PRC82(2010) etc. ppp(N*)p(LK+)? PRC92(2015)044002 vs. K.Suzuki, HYP2015 talk
23
Comparison between Calcs. and Exps.
Binding energy Chiral: B.E. ~ 20MeV Phenomenological: B.E. ~ 40-80MeV FINUDA/DISTO (if KbarNN): B.E. ~ 100MeV Width almost agreement in G~40-100MeV Theor.: mesonic decay Exp.: non-mesonic decay Phenomenological Chiral Upper limits were also obtained: [Inclusive d(g, K+p-)X] [Exclusive pppLK+]
24
Recent Measurement at J-PARC E27
Exclusive p+dK+Yp pp+ = 1.69 GeV/c Dp/p ~ 2x10-3 DW ~ 100 msr final-state is identified by MM[d(p+,K+pp)X] Bump structure in S0p decay mode: Mass Binding energy Width M(p+S+N) M(K+p+p) S0p Y. Ichikawa et al., PTEP (2015) 021D01.
25
Recent Measurement at J-PARC E27
Y. Ichikawa et al., PTEP (2015) 021D01. Decay branch: S0p Lp ds2/dW/dM2-14 deg.(Lab) [mb/sr/(15MeV/c2)] preliminary M(K+p+p) M(p+S+N) Theor. Cal. on Y*NYN : GLp/GS0p = 1.2 Sekihara, Jido, Kanda-En’yo PRC79(2009)062201(R). ds/dW“K-pp”S0p: Y.Ichikawa, PhD-thesis. Kyoto-U (2015) 1.69GeV/c: ds/dWL(1405)=36.9mb/sr BNL, NPB56(1973)15 = (ds/dW”K-pp”Yp) / (ds/dWL(1405)) ~ 7-8% large prob. of L(1405)p“K-pp” c.f., large prob. in DISTO, but < 50% in HADES T.Nagae
26
J-PARC E15 Experiment 3He(in-flight K-,n) reaction @ 1.0 GeV/c
2NA processes and Y decays can be discriminated kinematically semi-inclusive 3He(K-,n) T. Hashimoto et al., PTEP (2015) 061D01. exclusive (K-,Lp)nmissing Y. Sada et al., PTEP (2016) 051D01.
27
Exclusive 3He(K-,Lp)n --- result of E15-1st in 2013 ---
Y.Sada et al., PTEP (2016) 051D01.
28
Experimental Setup 15m
29
n-ID from Inclusive 3He(K-,Lp)X
Y. Sada et al., PTEP (2016) 051D01. S0pn YNNpp Lpn Lpns (2NA) x20 Lpn S0pn YNNpp YNNp YNNppp YNNp YNNppp Global fit both in Lp invariant- and missing-mass s ~ 10 MeV/c2 w/ simulated spectra of 2NA/3NA Neutron was identified by kinematics 3He(K-, Lp)nmissing 3NA(Lpn): # of Lpn events: ~200 S0pn contamination: ~20%
30
Exclusive 3He(K-,Lp)n A bump structure exists near the K-pp threshold
Prefers Smaller momentum transfer to Lp (0.8<cosqCMn) S=-1 dibaryon? L*N? KbarNN? … Y. Sada et al., PTEP (2016) 051D01.
31
Assuming a Breit-Wigner
c2-test with pole & 3NA(Ypn) – S-wave Breit-Wigner pole – w/ Gaussian form-factor [B.E = 15 MeV/c2] Y. Sada et al., PTEP (2016) 051D01.
32
A Theoretical Interpretation
Sekihara, Oset, Ramos, PTEP(2016)123D03. Chiral unitary approach Sekihara quasi-elastic kaon scattering Uncorrelated L(1405)p state KbarNN bound-state B=16MeV G=72 MeV Opt.A (Watson) Opt.A (Watson) M[K+p+p] M[K+p+p]
33
E15-2nd Experiment --- completed in Dec. 2015 ---
What is the structure observed in E151st data? E15-2nd Experiment --- completed in Dec E15-1st in 2013 E15-2nd in 2015 data-taking 4 days 3 weeks (K-,n) ~7 times more data (K-,Lp) ~30 times more data* * dedicated trigger was introduced for (K-,Lp) Will be published as “T.Yamaga et al., XXX (2017) XXX.”
34
Results of 3He(K-,Lp)n [E15-2nd]
IM(Lp) Structures around the Kpp threshold can be seen = bound-state + QF M(K+p+p) preliminary Structures are concentrated in forward-n region = small momentum-transfer detector acceptance cos(qn)
35
Results of 3He(K-,Lp)n [E15-2nd]
detector acceptance 𝟎.𝟕<𝐜𝐨𝐬𝜽𝒏𝑪𝑴<𝟏.𝟎 𝟎.𝟎<𝐜𝐨𝐬𝜽𝒏𝑪𝑴<𝟎.𝟕 Above M(Kpp) QF = [Quasi-elastic K] x [KNNLp] Below M(Kpp) Bound-State!? 𝟎.𝟕<𝐜𝐨𝐬𝜽𝒏𝑪𝑴<𝟏.𝟎 missing acceptance Flat distribution prop. to phase space Point like 3NA? preliminary (𝟎.𝟎<𝐜𝐨𝐬𝜽𝒏𝑪𝑴<𝟎.𝟕) ×𝟎.𝟒𝟕
36
Results of 3He(K-,Lp)n [E15-2nd]
Simple fitting w/o 3NA B.S.: Breit-Wigner QF: Gaussian w/ S0p contamination Well reproduce the spectrum B.E ~ 34 MeV/c2 G ~ 75 MeV/c2 preliminary Fermi-mom. Eff. from MM(3He(K-,Lp)X) preliminary
37
Results of 3He(K-,Lp)n [E15-2nd]
cosqn dependence detector acceptance 𝟎.𝟕5<𝐜𝐨𝐬𝜽𝒏𝑪𝑴<𝟏.𝟎 preliminary 0.95<cosqn<1.0 0.90<cosqn<0.95 0.85<cosqn<0.90 0.80<cosqn<0.85 0.75<cosqn<0.80
38
Results of 3He(K-,Lp)n [E15-2nd]
Peak position Width Gaussian Breit-Wigner Above M(K-pp): peak shift by recoil kaon energy Below M(K-pp): peak is independent to cosqn ( ~ momentum transfer) Similar tendency as a theoretical calc. QF B.S. Sekihara, Oset, Ramos, PTEP(2016)123D03
39
Present Status of KbarNN
Exp. CANDIDATES Upper limit LEPS/HADES B.E ~ MeV E15 B.E. ~ 100 MeV FINUDA/DISTO/E27 Theor. calculations. Difficult to reproduce deeply bound state using normal KbarN int. E15-2nd ? Phenomenological Chiral For further understanding: L(1405) production L*N doorway pSN decay channel new info. of KbarNN
40
Summary To investigate the KbarN interaction,
various experiments are proposed/conducting at J-PARC - Sensitive in different energy region & isospin - Kaonic-atom: E62/E57 will start in 2018/2019 L(1405): E31 1st: analysis will be finalized 2nd: will start in 2017 KbarNN: E27/E15 fruitful results were obtained in E27/E151st analysis of E152nd data is going on E153rd be discussed after analyzing new data
41
The Collaborations @ J-PARC K1.8BR
J-PARC E15/E31 collaboration
42
Spares
43
KbarN Interaction below the threshold
L(1405) plays an important role 𝐽 𝑃 = − Moriya et al., (CLAS Coll.), Phys. Rev. Lett. 112(2014) s KbarN molecular from LQCD J.M.M. Hall et al., Phys. Rev. Lett. 114(2015) S.Ohnish et al.,PRC93(2016) KbarN
44
Recent Measurement at LEPS
A.O. Tokiyasu et al., Phys. Lett. B 728 (2014) 616. Inclusive d(g, K+p-)X Eg = GeV cosqlabK+/p- > 0.95 sMM ~ 10 MeV BG: gNK+p-L/S/L(1520) NO peak structure U.L.: mb (= % CS of gdK+p-Y) M[K+p+p] LEPS2 (4p measurement)
45
Recent Measurement at HADES
Kpp th G. Agakishiev et al., Phys. Lett. B 742 (2015) 242 Exclusive pppLK+ E = 3.5 GeV Bonn–Gatchina PWA Well reproduces the data with N* resonances pppN*pLK+ NO peak structure U.L.: mb (= 2-12% CS of pppK+L) L(1405) production = 9.2 mb s(X=KbarNN)/s(L*) < ~50% PRC87(2013)025201 vs. DISTO: s(X) > 2.85GeV Combined analysis with COSY-TOF/DISTO/HOPI/HADES (pppK+L)
46
Only 4days data-taking in 2013
E15: Publications E151st experiment: Only 4days data-taking in 2013 inclusive 3He(K-,n)X exclusive 3He(K-,Lp)n T. Hashimoto et al., PTEP (2015) 061D01. Y. Sada et al., PTEP (2016) 051D01.
47
Semi-Inclusive 3He(K-,n)X
DATA sub-threshold excess (Y* and/or KbarNN?) Quasi Elastic K- + 3He K- + n + ps + ps ds/dWq=0deg ~ 6mb/sr Charge-Exchange K- + 3He K0 + n + ds ds/dWq=0deg ~ 11mb/sr MC T. Hashimoto et al., PTEP (2015) 061D01.
48
Semi-Inclusive 3He(K-,n)X
NO bump structure FINUDA/DISTO/ E27 T. Hashimoto et al., PTEP (2015) 061D01.
49
Assuming a Breit-Wigner
Y. Sada et al., PTEP (2016) 051D01. phase space Breit-Wigner form factor B.E = (stat.) ± 12(syst.) MeV/c2 = (stat.) ± 27(syst.) MeV/c2 Q = MeV/c
50
Experimental Setup Beamline spectrometer Target System
1.0 GeV/c K- Dp/p: 0.2% Target System ~0.5l Liquid 1.4K r = g/cm3 Cylindrical Detector System Acceptance: 54<q<126 deg. 59% of 4p Dpt/pt: 5.3% pt + 0.5%/b Neutron Counter Acceptance: 20 msr Dp/p for 1.2GeV/c n: 0.7%
51
A Theoretical Interpretation
Sekihara, Oset, Ramos, arXiv: Chiral unitary approach Sekihara, Tue. A-1 KbarNN state Sekihara, Oset, Ramos, arXiv: A: Watson app. B: Faddeev app. B=16MeV, G=72 MeV quasi-elastic kaon scattering M[K+p+p] KbarNN bound-state picture reproduces the data The data CANNOT be explained with uncorrelated L(1405)p
52
E15 1st vs 2nd Y. Sada et al., PTEP (2016) 051D01. E15-2nd
53
Exclusive 3He(K-,Lp)n The events widely distribute in the phase space
Contribution from 2NA processes seem to be small Event concentration is seen at TCMn/QCM~0.4
54
Exclusive 3He(K-,Lp)n E151st E152nd preliminary
55
KbarNN or NOT? --- Other Possibilities
A structure near KbarNN threshold L(1405)N bound state loosely-bound system, I=1/2, Jp=0- various decay modes, LN/SN/pSN pLN-pSN dibaryon structure near pSN threshold I=3/2, Jp=2+ no Lp decay (I=1/2)? Double-pole KbarNN loosely-bound KbarNN, & broad resonance near the pSN threshold pSN decay Partial restoration of Chiral symmetry enhancement of the KbarN interaction in dense nuclei T. Uchino et al., NPA868(2011)53. A structure near pSN threshold H. Garcilazo, A. Gal, NPA897(2013)167. A. Dote, T. Inoue, T. Myo, PTEP (2015) 043D02. S. Maeda, Y. Akaishi, T. Yamazaki, Proc. Jpn. Acad., B89(2013)418.
56
Smaller momentum transfer is preferred
Exclusive 3He(K-,Lp)n Small cos(qn) M[K+p+p] preliminary sliced Large cos(qn) Sekihara, Oset, Ramos, arXiv: Smaller momentum transfer is preferred
57
3He(K-,Lp)n: Decay Channel
M[K+p+p] preliminary Lp S0p sliced Lp S0p Lp~S0p S0p pYN S0p~pYN G(Lp) > G(S0p) !?
58
3He(K-,Lp)n: q-dependence
M[K+p+p] preliminary Kinematical Limit
60
K+ π+ E27: Experimental Setup K1.8 beam line spectrometer
SKS spectrometer K1.8 beam line spectrometer 1.69 GeV/c p+ Dp/p ~ 2x10-3 SKS spectrometer GeV/c K+ DW ~ 100 msr Target : liquid deuterium (1.99 g/cm2) K+ π+ K1.8 beam line spectrometer pπ = 1.69 GeV/c Y.Ichikawa
61
“K-pp” signal is hidden by QF!?
E27: Inclusive d(p+,K+)X Y. Ichikawa et al., PTEP (2014) 101D03. expected spectrum “K-pp” signal is hidden by QF!? + data - expected SN-LN cusp Y* mass shift? Ichikawa, Tue. A-1 Tokiyasu, Fri. E-1 T.Nagae
62
K+ π+ E27: Experimental Setup K1.8 beam line spectrometer
SKS spectrometer K1.8 beam line spectrometer 1.69 GeV/c p+ Dp/p ~ 2x10-3 SKS spectrometer GeV/c K+ DW ~ 100 msr Target : liquid deuterium (1.99 g/cm2) K+ π+ Range Counter Arrays Range Counter Arrays (RCA) 5 layers of Plastic scinti. deg. (L+R) 50 cm TOF Y.Ichikawa
63
E27: One-Proton Coincidence
pp > 250 MeV/c QFs are suppressed SN-LN cusp is clearly 2.13 GeV/c2 Broad enhancement is 2.28 GeV/c2 Y. Ichikawa et al., PTEP (2015) 021D01. < 1p coincidence spectrum > < 1p coincidence probability > = < Inclusive spectrum > SN-LN cusp Broad bump
64
E27: Two-Proton Coincidence
pp > 250 MeV/c QFs are suppressed SN-LN cusp is clearly 2.13 GeV/c2 Broad enhancement is 2.28 GeV/c2 Y. Ichikawa et al., PTEP (2015) 021D01. < 2p coincidence spectrum > < 2p coincidence probability > = Y.Ichikawa, PhD-thesis. Kyoto-U (2015) < Inclusive spectrum > SN-LN cusp Broad bump Y.Ichikawa
65
E27: Decay Mode Separation
① ② ③ Y. Ichikawa et al., PTEP (2015) 021D01. Decay mode can be separated with MM[d(p+,K+pp)X] two-protons in final state: K+Lp, K+S0p, K+Ypp ① ② ③
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.