Download presentation
Presentation is loading. Please wait.
1
Edge Detection using Mean Shift Smoothing
2
Introduction Edge detection problems: noise
problematic images: low contrast along edges parameter dependant (thresholds…)
3
Introduction – Mean Shift Clustering
The Clustering Problem Given a set of data points {xi} in a d-dimensional Euclidean space Rd, assign a label li to each point xi, based on proximity to high density regions in the space.
4
Introduction – Mean Shift Clustering Mathematical Background
The multivariate kernel density estimate is defined as: Using the Epanechnikov kernel: We obtain the Mean Shift Vector:
5
Introduction – Mean Shift Clustering Mathematical Background The multivariate kernel density estimate: Example Data Set {xi}
6
Introduction – Mean Shift Clustering Mathematical Background
The mean shift iteration, derived from the mean shift vector M(x): nk ≡ number of points in a sphere of radius h h ≡ window radius
7
Mean Shift Smoothing Initialize data set: For each j = 1..n
Initialize k = 1 and yk = xj. Repeat: Compute yk+1 using the mean shift iteration; k←k+1; until convergence (yk+1 – yk < ε). Assign Ismoothed( xj(1), xj(2) ) = yk(3).
8
Mean Shift Smoothing The window radius h: Original Image h = 4 h = 8
9
Mean Shift Smoothing The window radius h:
Original Image h = 10
10
Mean Shift Smoothing The window radius h:
11
Mean Shift Smoothing The window radius h:
Original Image h = 10 h = 15 h = 20
12
Edge Detection via Mean Shift Smoothing
Gradient Amplitude Estimation: Hysteresis Procedure:
13
Edge Detection via Mean Shift Smoothing
Original Image No Smoothing Smoothed - Edges Original Image No Smoothing Smoothed - Edges
14
Edge Detection via Mean Shift Smoothing
Original Image No Smoothing Smoothed Smoothed - Edges
15
Edge Detection via Mean Shift Smoothing
Original Image No Smoothing Smoothed Smoothed - Edges
16
Edge Detection via Mean Shift Smoothing
Original Image No Smoothing Smoothed Smoothed - Edges
17
Summary Amplification of edges in some cases.
Good performance handling Gaussian noise, while preserving object’s edges. Amplification of edges in some cases. Possible improvement: different rescaling policy (though more parameters needed). Problems: RUNNING TIME. 300 X 300 pixels image, with h ~ 20: 30 minutes on a household PC… Many parameters involved: h, T1, T2, ε. Doesn’t always improve edge detection. In some cases even produces poor results in comparison to edge detection without the smoothing process.
18
References [1] D. Comaniciu, P. Meer: Distribution Free Decomposition of Multivariate Data, (Invited), Pattern Analysis and Applications, Vol. 2, 22-30, 1999 [2] Lecture Notes from “Introduction to Computational and Biological Vision” at: Shahar/Teaching/Computational- Vision/LectureNotes.php.
19
The End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.