Presentation is loading. Please wait.

Presentation is loading. Please wait.

How to Use This Presentation

Similar presentations


Presentation on theme: "How to Use This Presentation"— Presentation transcript:

1 How to Use This Presentation
To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” To advance through the presentation, click the right-arrow key or the space bar. From the resources slide, click on any resource to see a presentation for that resource. From the Chapter menu screen click on any lesson to go directly to that lesson’s presentation. You may exit the slide show at any time by pressing the Esc key.

2 Standardized Test Prep
Resources Chapter Presentation Visual Concepts Transparencies Standardized Test Prep

3 Chapter 16 Table of Contents Section 1 Genetic Equilibrium
Population Genetics and Speciation Chapter 16 Table of Contents Section 1 Genetic Equilibrium Section 2 Disruption of Genetic Equilibrium Section 3 Formation of Species

4 Chapter 16 Objectives Section 1 Genetic Equilibrium
Identify traits that vary in populations and that may be studied. Explain the importance of the bell curve to population genetics. Compare three causes of genetic variation in a population. Calculate allele frequency and phenotype frequency. Explain Hardy-Weinberg genetic equilibrium.

5 Variation of Traits Within a Population
Section 1 Genetic Equilibrium Chapter 16 Variation of Traits Within a Population Population biologists study many different traits in populations, such as size and color.

6 Variation of Traits Within a Population, continued
Section 1 Genetic Equilibrium Chapter 16 Variation of Traits Within a Population, continued Causes of Variation Traits vary and can be mapped along a bell curve, which shows that most individuals have average traits, whereas a few individuals have extreme traits. Variations in genotype arise by mutation, recombination, and the random pairing of gametes.

7 Section 1 Genetic Equilibrium
Chapter 16 The Gene Pool The total genetic information available in a population is called the gene pool.

8 The Gene Pool, continued
Section 1 Genetic Equilibrium Chapter 16 The Gene Pool, continued Allele frequency is determined by dividing the total number of a certain allele by the total number of alleles of all types in the population.

9 The Gene Pool, continued
Section 1 Genetic Equilibrium Chapter 16 The Gene Pool, continued Predicting Phenotype Phenotype frequency is equal to the number of individuals with a particular phenotype divided by the total number of individuals in the population.

10 The Hardy-Weinberg Genetic Equilibrium
Section 1 Genetic Equilibrium Chapter 16 The Hardy-Weinberg Genetic Equilibrium Allele frequencies in the gene pool do not change unless acted upon by certain forces. Hardy-Weinberg genetic equilibrium is a theoretical model of a population in which no evolution occurs and the gene pool of the population is stable.

11 Section 1 Genetic Equilibrium
Chapter 16 Phenotype Frequency

12 Chapter 16 Objectives Section 2 Disruption of Genetic Equilibrium
List five conditions under which evolution may take place. Explain how migration can affect the genetics of populations. Explain how genetic drift can affect populations of different sizes. Contrast the effects of stabilizing selection, directional selection, and disruptive selection on populations over time. Identify examples of nonrandom mating.

13 Section 2 Disruption of Genetic Equilibrium
Chapter 16 Mutation Evolution may take place when populations are subject to genetic mutations, gene flow, genetic drift, nonrandom mating, or natural selection. Mutations are changes in the DNA.

14 Section 2 Disruption of Genetic Equilibrium
Chapter 16 Gene Flow Emigration and immigration cause gene flow between populations and can thus affect gene frequencies.

15 Section 2 Disruption of Genetic Equilibrium
Chapter 16 Genetic Drift Genetic drift is a change in allele frequencies due to random events. Genetic drift operates most strongly in small populations.

16 Chapter 16 Nonrandom Mating
Section 2 Disruption of Genetic Equilibrium Chapter 16 Nonrandom Mating Mating is nonrandom whenever individuals may choose partners.

17 Nonrandom Mating, continued
Section 2 Disruption of Genetic Equilibrium Chapter 16 Nonrandom Mating, continued Sexual Selection Sexual selection occurs when certain traits increase an individual’s success at mating. Sexual selection explains the development of traits that improve reproductive success but that may harm the individual.

18 Chapter 16 Natural Selection
Section 2 Disruption of Genetic Equilibrium Chapter 16 Natural Selection Natural selection can influence evolution in one of three general patterns.

19 Natural Selection, continued
Section 2 Disruption of Genetic Equilibrium Chapter 16 Natural Selection, continued Stabilizing Selection Stabilizing selection favors the formation of average traits.

20 Natural Selection, continued
Section 2 Disruption of Genetic Equilibrium Chapter 16 Natural Selection, continued Disruptive Selection Disruptive selection favors extreme traits rather than average traits.

21 Natural Selection, continued
Section 2 Disruption of Genetic Equilibrium Chapter 16 Natural Selection, continued Directional Selection Directional selection favors the formation of more-extreme traits.

22 Chapter 16 Two Kinds of Selection
Section 2 Disruption of Genetic Equilibrium Chapter 16 Two Kinds of Selection

23 Chapter 16 Objectives Section 3 Formation of Species
Relate the biological species concept to the modern definition of species. Explain how the isolation of populations can lead to speciation. Compare two kinds of isolation and the pattern of speciation associated with each. Contrast the model of punctuated equilibrium with the model of gradual change.

24 Chapter 16 The Concept of Species
Section 3 Formation of Species Chapter 16 The Concept of Species According to the biological species concept, a species is a population of organisms that can successfully interbreed but cannot breed with other groups.

25 Isolation and Speciation
Section 3 Formation of Species Chapter 16 Isolation and Speciation Geographic Isolation Geographic isolation results from the separation of population subgroups by geographic barriers.

26 Section 3 Formation of Species
Chapter 16 Geographic Isolation

27 Isolation and Speciation, continued
Section 3 Formation of Species Chapter 16 Isolation and Speciation, continued Allopatric Speciation Geographic isolation may lead to allopatric speciation.

28 Isolation and Speciation, continued
Section 3 Formation of Species Chapter 16 Isolation and Speciation, continued Reproductive Isolation Reproductive isolation results from the separation of population subgroups by barriers to successful breeding.

29 Reproductive Isolation
Section 3 Formation of Species Chapter 16 Reproductive Isolation

30 Isolation and Speciation, continued
Section 3 Formation of Species Chapter 16 Isolation and Speciation, continued Sympatric Speciation Reproductive isolation within the same geographic area is known as sympatric speciation.

31 Chapter 16 Rates of Speciation
Section 3 Formation of Species Chapter 16 Rates of Speciation In the gradual model of speciation (gradualism), species undergo small changes at a constant rate. Under punctuated equilibrium, new species arise abruptly, differ greatly from their ancestors, and then change little over long periods.

32 Chapter 16 Comparing Punctuated Equilibrium and Gradualism
Section 3 Formation of Species Chapter 16 Comparing Punctuated Equilibrium and Gradualism

33 Chapter 16 Multiple Choice
Standardized Test Prep Multiple Choice 1. What is the term for the total genetic information in a population? A. gene pool B. allele frequency C. distribution of traits D. phenotype frequency

34 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued 1. What is the term for the total genetic information in a population? A. gene pool B. allele frequency C. distribution of traits D. phenotype frequency

35 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued 2. Saint Bernards and Chihuahuas (two breeds of domestic dogs) cannot normally mate because they differ so much in size. Thus, they are reproductively isolated to some extent. What type of isolating mechanism is operating in this case? F. artificial G. prezygotic H. postzygotic J. geographic

36 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued 2. Saint Bernards and Chihuahuas (two breeds of domestic dogs) cannot normally mate because they differ so much in size. Thus, they are reproductively isolated to some extent. What type of isolating mechanism is operating in this case? F. artificial G. prezygotic H. postzygotic J. geographic

37 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued 3. How do mutations affect genetic equilibrium? A. Mutations cause emigration. B. Mutations cause immigration. C. Mutations introduce new alleles. D. Mutations maintain genotype frequency.

38 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued 3. How do mutations affect genetic equilibrium? A. Mutations cause emigration. B. Mutations cause immigration. C. Mutations introduce new alleles. D. Mutations maintain genotype frequency.

39 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued The illustration below shows two contrasting models for rates of speciation. Use the illustration to answer the questions that follow. 4. Which model of speciation rates is illustrated by model A in the graph? F. gradualism G. sexual selection H. disruptive selection J. punctuated equilibrium

40 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued The illustration below shows two contrasting models for rates of speciation. Use the illustration to answer the questions that follow. 4. Which model of speciation rates is illustrated by model A in the graph? F. gradualism G. sexual selection H. disruptive selection J. punctuated equilibrium

41 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued The illustration below shows two contrasting models for rates of speciation. Use the illustration to answer the questions that follow. 5. Which model of speciation rates is illustrated by model B in the graph? A. gradualism B. sexual selection C. disruptive selection D. punctuated equilibrium

42 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued The illustration below shows two contrasting models for rates of speciation. Use the illustration to answer the questions that follow. 5. Which model of speciation rates is illustrated by model B in the graph? A. gradualism B. sexual selection C. disruptive selection D. punctuated equilibrium

43 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued 6. genotype : allele :: phenotype : F. trait G. mutation H. gene pool J. population

44 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued 6. genotype : allele :: phenotype : F. trait G. mutation H. gene pool J. population

45 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued The illustration below shows the occurrence of variations in a particular characteristic within a population. The dark line represents an earlier point in time than the dashed line. Use the illustration to answer the question that follows. 7. Which type of selection is modeled in the illustration? A. sexual selection B. disruptive selection C. stabilizing selection D. directional selection

46 Multiple Choice, continued
Chapter 16 Standardized Test Prep Multiple Choice, continued The illustration below shows the occurrence of variations in a particular characteristic within a population. The dark line represents an earlier point in time than the dashed line. Use the illustration to answer the question that follows. 7. Which type of selection is modeled in the illustration? A. sexual selection B. disruptive selection C. stabilizing selection D. directional selection

47 Chapter 16 Short Response
Standardized Test Prep Short Response Explain the difference between reproductive isolation and geographic isolation.

48 Short Response, continued
Chapter 16 Standardized Test Prep Short Response, continued Explain the difference between reproductive isolation and geographic isolation. Answer: Reproductive isolation results from the separation of population subgroups by barriers that prevent breeding. Geographic isolation results from the separation of population subgroups by only geographic barriers.

49 The phrase Hardy-Weinberg genetic equilibrium
Chapter 16 Standardized Test Prep Extended Response The phrase Hardy-Weinberg genetic equilibrium refers to the frequency of genotypes in populations from generation to generation. Part A Briefly describe what this model predicts about genotype frequencies. Part B What are the set of assumptions that must be met for the Hardy-Weinberg genetic equilibrium to be valid?

50 Extended Response, continued
Chapter 16 Standardized Test Prep Extended Response, continued Answer: Part A The allele and genotype frequencies will stay the same from generation to generation unless acted upon by an outside influence. Part B In order for the Hardy-Weinberg genetic equilibrium to be valid five conditions must be met: no mutations; there is no gene flow; the population is large; individuals mate randomly; and selection does not occur.


Download ppt "How to Use This Presentation"

Similar presentations


Ads by Google