Presentation is loading. Please wait.

Presentation is loading. Please wait.

Nuclear Physics in Storage Rings

Similar presentations


Presentation on theme: "Nuclear Physics in Storage Rings"— Presentation transcript:

1 Nuclear Physics in Storage Rings
Mass Measurements and Decay Studies in the ESR Reaction studies in the ESR Yuri A. Litvinov 11 October 2007 Introduction High-resolution mass spectrometry Half-life measurements Summary and Outlook

2 Masses: Fundamental Properties of Atomic Nuclei
Binding energies Mass models Shell structure Mass matters ! Correlations pairing Reaction phase space Q-values Reaction probabilities The reach of nuclei Drip lines Specific configurations and topologies Nuclear astrophysics Paths of nucleosynthesis Fundamental symmetries Metrology …..

3 Measured Mass Surface

4 Secondary Beams of Short-Lived Nuclei
Storage Ring ESR Linear Accelerator UNILAC Fragment Separator FRS Production target Heavy-Ion Synchrotron SIS

5 Production & Separation of Exotic Nuclei
About 1000 nuclear residues identified A/Z-resolution ~10-3 J. Pereira et al., PRC (2007) Primary MeV/u Highly-Charged Ions (0, 1, 2 … bound electrons) In-Flight separation within ~ 150 ns Cocktail or mono-isotopic beams Transmission to the ESR of about 1%

6 SMS and IMS

7 Schottky Mass Spectrometry
B. Franzke, H. Geissel, G. Münzenberg

8 SMS 4 particles with different m/q time

9 SMS Fast Fourier Transform Sin(w1) Sin(w2) Sin(w3) Sin(w4) w1 w2 w3 w4
time

10 SMS: Broad Band Frequency Spectra
Single particles, Errors are determined by systematics and not statistics

11 Mass Distributions from Single Ions
B. Sun et al., EPJ A (2007)

12 SMS: Accuracy Dm/m ≈ 4 · 10-8 Smaller dynamic range
H. Geissel et al., Eur. Phys. J. A (in press)

13 Identification of New Isotopes
F. Bosch, et al., Int. J. Mass Spectr. 251 (2006)

14 Isochronous Mass Spectrometry
H. Wollnik, Y. Fujita, H. Geissel, G. Münzenberg, et al.

15 IMS: Time-of-Flight Spectra
Nuclei with half-lives as short as 20 ms m/q range: About 13% in mass-over-charge range M. Hausmann et al., Hyperfine Interactions 132 (2001) 291 M. Matos et al., Proc. EXON 2004

16 IMS: Br Tagging Good isochronous conditions are fulfilled only in a small range Solution: measurement of Br or v in addition H. Geissel et al., Eur. Phys. J. A (in press)

17 Measured Mass Surface IMS ~5 ∙10-7 Masses of more than 1100
Nuclides were measured Mass accuracy: SMS 1.5 ∙10-7 up to 4 ∙10-8 IMS ~5 ∙10-7 Results: ~ 350 new masses In addition more than 300 improved mass values

18 Science is either PHYSICS or collecting STAMPS

19 Limits of Nuclear Existence

20 Two-Proton Dripline

21 Odd-Even Staggering of Nuclear Binding Energies
W. Heisenberg, Z. Phys. 78 (1932) 156 J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108 (1957) 1175 A. Bohr, B.R. Mottelson, and D. Pines, Phys. Rev. 110 (1958) 936

22 Five Mass Formulae to extract OES
Hafnium isotopes Protons: Neutrons

23 Odd-Even Staggering of Nuclear Binding Energies
Yu.A.Litvinov, Th. Bürvenich et al., Phys. Rev. Lett. 95 (2005)

24 OES in Macroscopic-Microscopic Description
Yu.A.Litvinov, Th. Bürvenich et al., Phys. Rev. Lett. 95 (2005)

25 Predictive Powers of Mass Models
H. Geissel et al., NP A746 (2004) 150c

26 Predictive Powers of Mass Models
Calculated abundances assuming that one Sn value is varied by 1 MeV H. Geissel et al., AIP Conf. Proc. Vol. 831 (2006) 108

27 Atomic Mass Evaluation
AME FRS-ESR data 1. Q-values: b-decays (b+,b-) frequency correlations between all measured ESR data 2. Q-values: a-decays 3. Q-values: reactions (p,n), (n,g), etc. Combined Evaluation ~2·105 input data 4. direct measurements (traps, rings) Yu.A. Litvinov, G. Audi et al., ILIMA Technical Proposal 6169 input data Yu.A. Litvinov et al, NPA756 (2005) 3 A. Wapstra G. Audi, C. Thibault, NPA729 (2003) 129

28 Half-life Measurements

29 Nuclear Decay of Stored Single Ions
Yu.A. Litvinov et al, NPA756 (2003) 3

30 Stochastic + Electron Cooling
D. Boutin, PhD Thesis, JLU Giessen, 2005

31 Half-life of Fully-Ionized 207mTl81+
207mTl (E* = 1348 keV) T1/2(neutral) = 1.33(11) s T1/2(bare) = 1.47(32) s T1/2(theory) = 1.52(12) s D. Boutin, PhD Thesis, JLU Giessen, 2005 T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005)

32 Beta-Decays on the Chart of Nuclides
p-process rp-process np-process Astrophysical scenarios: high temperature = high degree of ionization fussion

33 Fully-Ionized Atoms John N. Bahcall, “Theory of Bound-State Beta Decay”, Phys. Rev. 124 (1961) 495 John N. Bahcall, “Beta Decay in Stellar Interiors”, Phys. Rev. 126 (1962) 1143 Koji Takahashi, Koichi Yokoi, “Nuclear Beta-Decays of Highly-Ionized Heavy Atoms in Stellar Interiors”, Nucl. Phys. A 404 (1983) 578 “Beta-Decay Rates of Highly-Ionized Heavy Atoms in Stellar Interiors”, Atomic Data Nucl. Data Tables 36 (1987) 375

34 Half-Lives of Nuclear Isomers
laboratory frame Neutral atom is 0.49(2) s Fully ionized atom is 11(1) s T1/2 (fully ionized) T1/2 (neutral) = 22(2) Yu.A. Litvinov, et al., PLB 573 (2003) 80-85

35 Bound-State b-decay

36 Bound-State b-decay of 187Re
The 7 Nuclear Clocks for the Age of the Earth, the Solar System, the Galaxy, and the Universe E T½ = 33 y 10 keV g.s. 187Re75+ βb Q = 62 keV clock T1/2[109 y] 40K/40Ar (b) 1.3 238U…Th…206Pb (a,b) 4.5 232Th…Ra…208Pb (a,b) 14 176Lu/176Hf (b) 30 187Re/187Os (b) 42 87Rb/87Sr (b) 50 147Sm/143Nd (a) 100 187Re0 10 keV T½ = 42 Gy; Q = 2.7 keV g.s. β- Clayton (1964): a mother-daughter couple (187Re/187Os) is the “best” radioactive clock F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190

37 Bound-State b-decay of 163Dy
s process: slow neutron capture and β- decay near valley of β stability at kT = 30 keV; → high atomic charge state → bound-state β decay p process 160 164 162 161 163 166 Dy Ho Er r process s process 165 T1/2 = 48 days branchings caused by bound-state β decay M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164

38 Bound-State b-decay in 206,207Tl
λ = λb+λc+λR λb bound/continuum branching ratio T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005)

39 Next Step: Bound-State b-decay of 205Tl
F. Bosch et al., GSI Proposal

40 Hydrogen-Like Ions I. Iben et al., “The Effect of Be7 K-Capture on the Solar Neutrino Flux”, Ap. J. 150 (1967) 1001 L.M. Folan, V.I. Tsifrinovich, “Effects of the Hyperfine Interaction on Orbital Electron Capture”, Phys. Rev. Lett. 74 (1995) 499

41 Electron Capture in Hydrogen-like Ions
Classical EC-theory: Gamow-Teller allowed transition 1+  0+ b+ to EC branching ratio: lb+/lEC (neutral atom) ≈ 1 W.Bambynek et al., Rev. Mod. Phys 49, 1977 S-electron density at the nucleus: |fS(0)|2  1/ n3 Conclusion: H-Like ion should have 41% longer half-life PEC (neutral atom)  2  1/ n3 = 2.4 M. Campbell et al., Nucl. Phys. A283 (1997) 413 PK (H-like)  1 * 1/ 13 = 1 lb+/lK (He-like) ≈ 1.37 lb+/lK (H-like) ≈ 2.4 lb+/lK (H-like) ≈ ? ≈ 2.74 ?

42 EC in Hydrogen-like Ions
lb+/lEC (neutral atom) ≈ 1 Expectations: EC(H-like)/EC(He-like) ≈ 0.5 lb+/lK (H-like) ≈ 2.4 FRS-ESR Experiment l(neutral) = (1) s-1 G.Audi et al., NPA729 (2003) 3 lb+(bare) = (8) s-1 (decay of 140Pr59+) lEC(H-like) = (6) s-1 (decay of 140Pr58+) lEC(He-like) = (7) s-1 (decay of 140Pr57+) EC(H-like)/EC(He-like) = 1.49(8) lb+/lEC(H-like) = 0.72

43 Electron Capture in Hydrogen-like Ions
Gamow-Teller transition 1+  0+ S. Typel and L. Grigorenko µ = µN Z. Patyk Theory: The H-Like ion should really decay 20% faster than neutral atom! Probability of EC Decay Neutral 140Pr: P = 2.381 He-like 140Pr: P = 2 (2I+1)/(2F+1) H-like 140Pr: P = 3

44 Next Step B.M. Dodsworth et al., Phys. Rev. 142 (1966) 638.
µ (64Cu) = −0.217(2) mN

45 Some speculations on the EC-decay of 7Be
A.V. Gruzinov, J.N. Bahcall, Astroph. J. 490 (1997) 437 Ionization of 7Be in the Sun can be ~ % 7Be is a key nuclide to calculate the high-energy neutrino flux from the Sun Transition (F=1F=1) is accelerated by (2I+1)/(2F1+1) i.e. by 8/3 However, there are only (2F1+1)/((2F1+1)+(2F2+1)) = 3/8 of 7Be in this state

46 Single-Particle Decay Spectroscopy

47 Sensitivity to single stored ions
Recording the correlated changes of peak intensities corresponding to mother and daughter ions Reliable determination of the number of a few stored particles Investigation of a selected decay branch, e.g. pure electron capture decay Systematical effects such as late cooling or feeding via atomic or nuclear decays can be disentangled F. Bosch et al., Int. J. Mass Spectr. 251 (2006) 212

48 Summary and Outlook Two complementary methods: Schottky and Isochronous mass spectrometry. Broad-band: simultaneous measurements of ~100 of nuclides High accuracy: 5 ∙10-7 for the IMS and up to 4 ∙10-8 for SMS Ultimate sensitivity and efficiency: single ion is sufficient Short half-lives: down to ~10 ms Ideal for measurements of large-areas of nuclides with very low cross-sections and very short half-lives Highly-charged ions Ideal for decay studies relevant for astrophysical scenarios

49 FAIR - Facility for Antiproton and Ion Research
GSI today Future facility SIS 100/300 SIS 18 UNILAC ESR Super FRS HESR RESR CR FLAIR 100 m NESR

50 ILIMA: Masses and Halflives

51 EXL: Feasibility Demonstration at the ESR
experimental conditions: - 136Xe beam, E = 350 MeV/u circulating ions in ring  L  6  1027 cm-2 sec-1 experimental setup: H2 gas jet target: 6 x 1012 cm-2 Si strip recoil detector in UHV detector for slow neutrons detectors for fast neutrons and protons forward heavy-ion detector 3 different luminosity monitors absolute differential 136Xe(p,p) cross section, energy threshold  500 keV  cm  0.2° deduced nuclear matter radius: Rm = 5.79 (15) fm (expected value: Rm = 5.75 fm) EXL Collaboration

52 ILIMA: Towards Isomeric Beams
1. Pure isomeric beams can be prepared if the half-life of the corresponding ground state is much shorter. 2. For isomers with large excitation energies a spatial separation by means of a fast micrometer scraper is possible. In the first experiment the isobars with a Q-value of MeV were successfully separated. Pure beams of ions in the isomeric or ground state can be prepared alternatively. Injection length 170 s ILIMA Collaboration

53 FRS-ESR Half-Life and Mass Measurements F R S E S R H a l f L i f e a
Collaboration G.Audi, K.Beckert, F.Bosch, D.Boutin, C.Brandau, T.Bürvenich, L.Chen, I.Cullen, C.Dimopoulou, A.Dolinskii, B.Fabian, T.Faestermann, B.Franzke, H.Geissel, E.Haettner, M.Hausmann, P.Kienle, O.Klepper, R.Knöbel, C.Kozhuharov, J.Kurcewicz, Y.Litvinov, S.Litvinov, Z.Liu, L.Maier, M.Mazzocco, F.Montes, G.Münzenberg, A.Musumarra, S.Nakajima, C.Nociforo, F.Nolden, T.Ohtsubo, A.Ozawa, Z.Patyk, W.Plass, T.Radon, H.Schatz, C.Scheidenberger, M.Shindo, J.Stadlmann, M.Steck, T.Stöhlker, B.Sun, T.Suzuki, P.Walker, H.Weick, N.Winckler, M.Winkler, H.Wollnik, T.Yamaguchi


Download ppt "Nuclear Physics in Storage Rings"

Similar presentations


Ads by Google