Download presentation
Presentation is loading. Please wait.
1
Algebraic Property Testing:
A Survey Madhu Sudan MIT April 1, 2009 Algebraic Property DIMACS
2
Algebraic Property Testing:
Personal Perspective Madhu Sudan MIT April 1, 2009 Algebraic Property DIMACS
3
Algebraic Property Testing:
Personal Perspective Madhu Sudan MIT April 1, 2009 Algebraic Property DIMACS
4
Algebraic Property Testing @ DIMACS
Distance: Definition: Notes: ( f ; g ) = P r x 2 D [ 6 ] F m i n . F i s ( k ; ) - l o c a y t e b f 9 q u r T . 2 p w 1 j k - l o c a y t e s b i m p 9 ; > = O ( 1 ) n d r : A f 2 F w . April 1, 2009 Algebraic Property DIMACS
5
Algebraic Property Testing @ DIMACS
Brief History [Blum,Luby,Rubinfeld – S’90] Linearity + application to program testing [Babai,Fortnow,Lund – F’90] Multilinearity + application to PCPs (MIP). [Rubinfeld+S.] Low-degree testing + Formal Definition [Goldreich,Goldwasser,Ron] Graph property testing. Since then … many developments Graph properties Statistical properties More algebraic properties April 1, 2009 Algebraic Property DIMACS
6
Specific Directions in Algebraic P.T.
More Properties Low-degree (d < q) functions [RS] Moderate-degree (q < d < n) functions q=2: [AKKLR] General q: [KR, JPRZ] Long code/Dictator/Junta testing [PRS] BCH codes (Trace of low-deg. poly.) [KL] All nicely “invariant” properties [KS] Better Parameters (motivated by PCPs). #queries, high-error, amortized query complexity, reduced randomness. April 1, 2009 Algebraic Property DIMACS
7
Contrast w. Combinatorial P.T.
U n i v e r s f : D ! R g ( A l s o u a y ) R i e d F P r p t = L n b c . M u s t a c e p O k o r j w . h F F Algebraic Property = Code! (usually) April 1, 2009 Algebraic Property DIMACS
8
Algebraic Property Testing @ DIMACS
Goal of this talk Implications of linearity Constraints, Characterizations, LDPC structure One-sided error, Non-adaptive tests [BHR] Redundancy of Constraints Tensor Product Codes Symmetries of Code Testing affine-invariant codes Yields basic tests for all known algebraic codes (over small fields). April 1, 2009 Algebraic Property DIMACS
9
Basic Implications of Linearity [BHR]
Generic adaptive test = decision tree. f(i) 1 f(j) f(k) P i c k p a t h f o l w e d b y r n m g 2 F . 1 Q u e r y f a c o d i n g t p h . A c e p t i f o n a h s w m 2 F . Y i e l d s n o - a p t v r f F . April 1, 2009 Algebraic Property DIMACS
10
Basic Implications of Linearity [BHR]
Generic adaptive test = decision tree. f(i) 1 f(j) f(k) P i c k p a t h f o l w e d b y r n m g 2 F . 1 Q u e r y f a c o d i n g t p h . A c e p t i f o n a h s w m 2 F . Y i e l d s n o - a p t v r f F . April 1, 2009 Algebraic Property DIMACS
11
Constraints, Characterizations
S a y t e s q u r i 1 ; : k c p h f ( ) 2 V 6 = F ( i 1 ; : k V ) = C o n s t r a E v e y f 2 F . 1 D i1 i2 ik in V? 2 I f e v r y 6 2 F j c t d w . p o s i b h n a z Like LDPC Codes! April 1, 2009 Algebraic Property DIMACS
12
Constraints, Characterizations
S a y t e s q u r i 1 ; : k c p h f ( ) 2 V 6 = F ( i 1 ; : k V ) = C o n s t r a E v e y f 2 F . 1 D i1 i2 ik in V? 2 I f e v r y 6 2 F j c t d w . p o s i b h n a z Like LDPC Codes! April 1, 2009 Algebraic Property DIMACS
13
Example: Linearity Testing [BLR]
Constraints: Characterization: C x ; y = ( + V ) j 2 F n w h e r f a b g x in V? f i s l n e a r 8 x ; y C t d y x+y April 1, 2009 Algebraic Property DIMACS
14
Insufficiency of local characterizations
[Ben-Sasson, Harsha, Raskhodnikova] There exist families characterized by k-local constraints that are not o(|D|)-locally testable. Proof idea: Pick LDPC graph at random … (and analyze resulting property) F April 1, 2009 Algebraic Property DIMACS
15
Why are characterizations insufficient?
Constraints too minimal. Not redundant enough! Proved formally in [Ben-Sasson, Guruswami, Kaufman, S., Viderman] Constraints too asymmetric. Property must show some symmetry to be testable. Not a formal assertion … just intuitive. April 1, 2009 Algebraic Property DIMACS
16
Algebraic Property Testing @ DIMACS
Redundancy? E.g. Linearity Test: Standard LDPC analysis: What natural operations create redundant local constraints? Tensor Products! ( D 2 ) c o n s t r a i d m D i m e n s o ( F ) f r c t a . R q u # < l w h d y ! April 1, 2009 Algebraic Property DIMACS
17
Tensor Products of Codes!
Redundancy? F G = f M a t r i c e s u h v y o w n F d l m G g S u p o s e F , G y t m a i c F i r s t ` e n f d m b y h . Free F d e t r m i n G d e t r m i n d e t r m i n w c , b y F a G ! April 1, 2009 Algebraic Property DIMACS
18
Testability of tensor product codes?
Natural test: Given Matrix M Test if random row in F Test if random column in G Claim: If F, G codes of constant (relative) distance; then if test accepts w.h.p. then M is close to codeword of F x G Yields O(√n) local test for codes of length n. Can we do better? Exploit local testability of F, G? April 1, 2009 Algebraic Property DIMACS
19
Robust testability of tensors?
Natural test (if F,G locally testable): Given Matrix M Run Local Test for F on random row Run Local Test for G on random column Suppose M close on most rows/columns to F, G. Does this imply M is close to F x G? Generalizes test for bivariate polynomials. True for F, G = class of low-degree polynomials. [BFLS, Arora+Safra, Polishchuk+Spielman]. General question raised by [Ben-Sasson+S.] [P. Valiant] Not true for every F, G ! [Dinur, S., Wigderson] True if F (or G) locally testable. Test that random row close to F Test that random column close to G April 1, 2009 Algebraic Property DIMACS
20
Tensor Products and Local Testability
Robust testability allows easy induction (essentially from [BFL, BFLS]; see also [Ben-Sasson+S.]) L e t F n = - f o l d s r . G i v e n f : D ! F N a t u r l s P c k d o m x - p y j 2 April 1, 2009 Algebraic Property DIMACS
21
Robust testability of tensors (contd.)
Unnatural test (for F x F x F): Given 3-d matrix M: Pick random 2-d submatrix. Verify it is close to F x F Theorem [BenSasson+S., based on Raz+Safra]: Distance to F x F x F proportional to average distance of random 2-d submatrix to F x F. [Meir]: “Linear-algebraic” construction of Locally Testable Codes (matching best known parameters) using this (and many other ingredients). April 1, 2009 Algebraic Property DIMACS
22
Redundant Characterizations (contd.)
Redundant constraints necessary for testing [BGKSV] How to get redundancy? Tensor Products Sufficient to get some local testability Invariances (Symmetries) Sufficient? Counting (See Tali’s talk) April 1, 2009 Algebraic Property DIMACS
23
Algebraic Property Testing @ DIMACS
Testing by symmetries April 1, 2009 Algebraic Property DIMACS
24
Invariance & Property testing
Invariances (Automorphism groups): Hope: If Automorphism group is “large” (“nice”), then property is testable. F o r p e m u t a i n : D ! , s - v f 2 l . A u t ( F ) = f j i s - n v a r g o m p d e c . April 1, 2009 Algebraic Property DIMACS
25
Algebraic Property Testing @ DIMACS
Examples Majority: Graph Properties: Algebraic Properties: What symmetries do they have? A u t g r o p = S D ( f l ) . E a s y F c t : I f A’ u ( ) = S D h e n i p o l R ; 1 - b . A u t . g r o p i v e n b y a m f c s [ F N S , B l ] w h April 1, 2009 Algebraic Property DIMACS
26
Algebraic Properties & Invariances
Automorphism groups? Question: Are Linear/Affine-Inv., Locally Characterized Props. Testable? ([Kaufman + S.]) D = F n , R ( L i e a r t y o w - d g M u l ) O r D = K F , R ( u a l - B C H ) ( K ; F n i t e l d s ) L i n e a r t s f o m d . ( x ) = A w h 2 F (Linear-Invariant) A n e t r a s f o m i d . ( x ) = + b w h 2 F ; (Affine-Inv.) April 1, 2009 Algebraic Property DIMACS
27
Linear-Invariance & Testability
Unifies previous studies on Alg. Prop. Testing. (And captures some new properties) Nice family of 2-transitive group of symmetries. Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] : Linear code with k-local constraint and 2-transitive group of symmetries must be testable. April 1, 2009 Algebraic Property DIMACS
28
Some Results [Kaufman + S.]
Theorem 1: Theorem 2: F f K n ! g l i e a r , - v t k o c y h z d m p s ( ; ) b . F f K n ! g l i e a r , - v t h s k o c m p ( ; ) y b . April 1, 2009 Algebraic Property DIMACS
29
Examples of Linear-Invariant Families
L i n e a r f u c t o s m F . P o l y n m i a s F [ x 1 ; : ] f d e g r t T r a c e s o f P l y i n K [ x 1 ; : ] d g t m ( T r a c e s o f ) H m g n u p l y i d F 1 + 2 , w h e r a l i n - v t . P o y m s u p d b g ; 3 5 7 April 1, 2009 Algebraic Property DIMACS
30
What Dictates Locality of Characterizations?
P r e c i s l o a t y n u d : D p - f g . E x m F b + j h v k w F o r a n e - i v t f m l y d c ( s ) b h g F o r s m e l i n a - v t f , c b u h g d . E x a m p l e : K = F 7 ; 1 + 2 o y f d g r t s 6 u n i 3 . D ( ) L c 4 9 April 1, 2009 Algebraic Property DIMACS
31
Property Testing from Invariances
April 1, 2009 Algebraic Property DIMACS
32
Key Notion: Formal Characterization
F h a s i n g l e - o r b t c z f 9 C = ( x 1 ; : k V ) u 2 A . T h e o r m : I f F a s i n g l - b t c z y k ( w ) . Rest of talk: Analysis (extending BLR) April 1, 2009 Algebraic Property DIMACS
33
Algebraic Property Testing @ DIMACS
BLR Analysis: Outline H a v e f s . t P r x ; y [ ( ) + 6 = ] < 1 2 W n o h w c l m g F D e n g ( x ) = m o s t l i k y f + . I f c l o s e t F h n g w i b a d . B u t i f n o c l s e ? g m a y v b q d ! S t e p s : S t e p : P r o v f c l s g S t e p 1 : P r o v m s l i k y w h n g a j . S t e p 2 : P r o v h a g i s n F . April 1, 2009 Algebraic Property DIMACS
34
Algebraic Property Testing @ DIMACS
BLR Analysis: Step 0 D e n g ( x ) = m o s t l i k y f + . C l a i m : P r x [ f ( ) 6 = g ] 2 L e t B = f x j P r y [ ( ) 6 + ] 1 2 g P r x ; y [ l i n e a t s j c 2 B ] 1 ) P r x [ 2 B ] I f x 6 2 B t h e n ( ) = g April 1, 2009 Algebraic Property DIMACS
35
Algebraic Property Testing @ DIMACS
V o t e x ( y ) BLR Analysis: Step 1 D e n g ( x ) = m o s t l i k y f + . S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4 April 1, 2009 Algebraic Property DIMACS
36
Algebraic Property Testing @ DIMACS
V o t e x ( y ) BLR Analysis: Step 1 D e n g ( x ) = m o s t l i k y f + . S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4 April 1, 2009 Algebraic Property DIMACS
37
Algebraic Property Testing @ DIMACS
BLR Analysis: Step 1 V o t e x ( y ) D e n g ( x ) = m o s t l i k y f + . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4 f ( y ) f ( x + y ) ? f ( z ) f ( y + z ) f ( y + 2 z ) f ( x + z ) f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e April 1, 2009 Algebraic Property DIMACS
38
Algebraic Property Testing @ DIMACS
BLR Analysis: Step 1 V o t e x ( y ) D e n g ( x ) = m o s t l i k y f + . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] 4 f ( y ) f ( x + y ) ? f ( z ) f ( y + z ) f ( y + 2 z ) f ( x + z ) f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e April 1, 2009 Algebraic Property DIMACS
39
BLR Analysis: Step 2 (Similar)
f < 1 2 , t h n 8 x ; y g ( ) + = P r o b . R w / c l u m n s - z e 4 g ( x ) g ( y ) g ( x + y ) f ( z ) f ( y + z ) f ( y + 2 z ) f ( x + z ) f ( 2 y + z ) f ( x + 2 y z ) April 1, 2009 Algebraic Property DIMACS
40
Our Analysis: Outline ² f s . t P r [ h ( x ) ; : i 2 V ] = ± ¿ ² D e
1 ) ; : k i 2 V ] = D e n g ( x ) = t h a m i z s P r f L j 1 [ ; 2 : k V ] S t e p s : S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. S t e p 2 : P r o v h a g i s n F . April 1, 2009 Algebraic Property DIMACS
41
Our Analysis: Outline ² f s . t P r [ h ( x ) ; : i 2 V ] = ± ¿ ² D e
1 ) ; : k i 2 V ] = D e n g ( x ) = t h a m i z s P r f L j 1 [ ; 2 : k V ] S a m e s b f o r S t e p s : S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. S t e p 2 : P r o v h a g i s n F . April 1, 2009 Algebraic Property DIMACS
42
Algebraic Property Testing @ DIMACS
V o t e x ( L ) Matrix Magic? D e n g ( x ) = t h a m i z s P r f L j 1 [ ; 2 : k V ] L e m a : 8 x , P r ; K [ V o t ( ) 6 = ] 2 k 1 L ( x 2 ) L ( x k ) x K ( x 2 ) ? . K ( x k ) April 1, 2009 Algebraic Property DIMACS
43
? Matrix Magic? L ( x ) ¢ L ( x ) x K ( x ) . K ( x ) ² W a n t m r k
2 ) L ( x k ) x K ( x 2 ) ? . K ( x k ) W a n t m r k e d o w s b c i . S u p o s e x 1 ; : ` l i n a r y d t h m .
44
Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e
Fill with random entries Matrix Magic? Fill so as to form constraints Tensor magic implies final columns are also constraints. ` L ( x 2 ) L ( x k ) x K ( x 2 ) ` . K ( x k ) S u p o s e x 1 ; : ` l i n a r y d t h m . April 1, 2009
45
Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e
Fill with random entries Matrix Magic? Fill so as to form constraints Tensor magic implies final columns are also constraints! ` L ( x 2 ) L ( x k ) x K ( x 2 ) ` . K ( x k ) S u p o s e x 1 ; : ` l i n a r y d t h m . April 1, 2009
46
Algebraic Property Testing @ DIMACS
Summarizing Affine invariance + single-orbit characterizations imply testing. Unifies analysis of linearity test, basic low-degree tests, moderate-degree test (all A.P.T. except dual-BCH?) April 1, 2009 Algebraic Property DIMACS
47
Algebraic Property Testing @ DIMACS
Concluding thoughts - 1 Didn’t get to talk about PCPs, LTCs (though we did implicitly) Optimizing parameters Parameters In general Broad reasons why property testing works worth examining. Tensoring explains a few algebraic examples. Invariance explains many other algebraic ones. (More about invariances in [Grigorescu,Kaufman,S. ’08], [GKS’09]) April 1, 2009 Algebraic Property DIMACS
48
Algebraic Property Testing @ DIMACS
Concluding thoughts - 2 Invariance: Seems to be a nice lens to view all property testing results (combinatorial, statistical, algebraic). Many open questions: What groups of symmetries aid testing? What additional properties needed? Local constraints? Linearity? Does sufficient symmetry imply testability? Give an example of a non-testable property with a k-single orbit characterization. April 1, 2009 Algebraic Property DIMACS
49
Algebraic Property Testing @ DIMACS
Thank You! April 1, 2009 Algebraic Property DIMACS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.