Download presentation
Presentation is loading. Please wait.
1
The concept of the airfoil (wing section)
Prandtl’s approach to the analysis of airplane wings: (1) the study of the section of the wing (the airfoil) (2) the modification of airfoil properties to account for the complete wing z What is an airfoil? an “infinite” wing in 2D flow the local section of a true wing x y Airfoil section Motivation for looking at airfoils: the wing properties follow from the local airfoil properties a good model for slender wings (i.e. with large aspect ratio) V Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
2
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
3
Airfoil Nomenclature
4
Airfoil Characteristics
Attached flow: cl ~ a (inviscid) airfoil theory Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
5
Limitations of the (inviscid) airfoil theory
Assumptions: - inviscid, irrotational flow - incompressible What is correctly predicted: the pressure distribution over the airfoil lift and pitching moment What is absent: viscous effects: - boundary layer development friction forces flow separation no prediction of drag (D = 0!) or maximum lift Conclusion: airfoil theory can reasonably predict lift and pitching moment as long as the flow does not separate Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
6
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
7
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
8
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
9
The flow-tangency condition (2)
normal component of the freestream slope of the camber line velocity induced by the vortex sheet (x is fixed; is running variable) Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
10
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
11
Resume: the basic equations of the thin airfoil theory
1. The fundamental equation of the thin airfoil theory: the flow-tangency condition (making the camber line z(x) a streamline) 2. The relation that determines the circulation of the airfoil: the Kutta condition (making the flow smooth at the trailing edge) Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
12
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
13
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
14
The symmetrical airfoil
Coordinate transformation: Solution is given by: Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
15
The symmetrical airfoil: lift
Calculation of the lift: Lift coefficient: Lift slope: Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
16
The symmetrical airfoil: pitching moment
Calculation of the pitching moment about the leading edge: Moment coefficient about leading edge: Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
17
The symmetrical airfoil: summary
Vorticity distribution (=lift distribution) Lift coefficient: Lift slope: Moment coefficient about quarter-chord point: quarter-chord point is both the center of pressure: and the aerodynamic center: is independent of Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
18
4.8 The cambered airfoil TUD
Condition to make the camber line z(x) a streamline of the flow The solution for this more general problem can be written as a Fourier series: the coefficients An (n=0,1,2,...) depend on the shape of the camber line z(x) the coefficients A0 depends also on “Basic solution” for the symmetrical airfoil: A0 = Additional terms Note: () = 0, so the Kutta condition is satisfied Substitution of the proposed solution in the upper equation gives: (use again standard integrals) Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
19
The cambered airfoil: finding the coefficients An
The solution can be interpreted as a Fourier expansion of the function dz/dx This Fourier series can be inverted to find the explicit relations for the individual coefficients An We can use these expressions in two ways: 1. Analysis: determine the coefficients An for a given camber line z(x) 2. Design: determine camber line z(x) for given coefficients An Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
20
The cambered airfoil: the aerodynamic coefficients (1)
The lift coefficient: Note: for the lift coefficient only A0 and A1 required! Independent of Lift slope: for every (thin) airfoil! Zero-lift angle: Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
21
The cambered airfoil: the aerodynamic coefficients (2)
The moment coefficient about the LE: Note: for the moment coefficient only A0, A1 and A2 required! moment about the quarter-chord point: Independent of ! For every (thin) airfoil the aerodynamic center is located at the quarter-chord point The quarter-chord point is (in general) not the center of pressure: Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
22
The cambered airfoil: summary
Vorticity distribution (=lift distribution) Relation with the camber line shape z(x) Aerodynamic coefficients: Aerodynamics-B, AE2-115 I, Chapter 4 Gerritsma & Van Oudheusden TUD
23
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
26
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
27
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
28
EXAMPLE: NACA 65-006 SYMMETRIC AIRFOIL
dcl/da = 2p Bell X-1 used NACA (6% thickness) as horizontal tail Thin airfoil theory lift slope: dcl/da = 2p rad-1 = 0.11 deg-1 Compare with data At a = -4º: cl ~ -0.45 At a = 6º: cl ~ 0.65 dcl/da = 0.11 deg-1
29
EXAMPLE: NACA 65-006 SYMMETRIC AIRFOIL
cm,c/4 = 0 Bell X-1 used NACA (6% thickness) as horizontal tail Thin airfoil theory lift slope: dcl/da = 2p rad-1 = 0.11 deg-1 Compare with data At a = -4º: cl ~ -0.45 At a = 6º: cl ~ 0.65 dcl/da = 0.11 deg-1 Thin airfoil theory: cm,c/4 = 0
30
EXAMPLE CALCULATION NACA 2412 Root Airfoil: NACA 2412
GOAL: Find values of cl, aL=0, and cm,c/4 for a NACA 2412 Airfoil Maximum thickness 12 % of chord Maximum chamber of 2% of chord located 40% downstream of the leading edge of the chord line Check Out: NACA 2412 Root Airfoil: NACA 2412 Tip Airfoil: NACA 0012
31
EQUATIONS DESCRIBING MEAN CAMBER LINE: z = z(x)
Equation describes the shape of the mean camber line forward of the maximum camber position (applies for 0 ≤ x/c ≤ 0.4) Equation describes the shape of the mean camber line aft of the maximum camber position (applies for 0.4 ≤ x/c ≤ 1) /c ≤ 1)
32
COORDINATE TRANSFORMATION: x → q, x0 → q0
Equation describes the shape of the mean camber line slope forward of the maximum camber position Equation describes the shape of the mean camber line slope aft of the maximum camber position
33
EXAMINE LIMITS OF INTEGRATION
Coefficients A0, A1, and A2 are evaluated across the entire airfoil Evaluated from the leading edge to the trailing edge Evaluated from leading edge (q=0) to the trailing edge (q=p) 2 equations the describe the fore and aft portions of the mean camber line Fore equation integrated from leading edge to location of maximum camber Aft equation integrated from location of maximum camber to trailing edge The location of maximum camber is (x/c)=0.4 What is the location of maximum camber in terms of q?
35
EXAMPLE: NACA 2412 CAMBERED AIRFOIL
dcl/da = 2p Thin airfoil theory lift slope: dcl/da = 2p rad-1 = 0.11 deg-1 What is aL=0? From data aL=0 ~ -2º From theory aL=0 = -2.07º What is cm,c/4? From data cm,c/4 ~ From theory cm,c/4 =
38
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
39
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
40
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
41
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
42
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
43
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
44
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
45
TUD
47
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
48
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
49
Aerodynamics-B, AE2-115 I, Chapter 4
Gerritsma & Van Oudheusden TUD
50
ACTUAL LOCATION OF AERODYNAMIC CENTER
x/c=0.25 NACA 23012 xA.C. < 0.25c x/c=0.25 NACA 64212 xA.C. > 0.25 c
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.